Bone healing, biocompatibility, and safety employing the IlluminOss System (IS), comprised of an inflatable balloon filled with photopolymerizable liquid monomer, was evaluated in New Zealand white rabbits. Successful bone healing and callus remodeling over 6 months was demonstrated radiologically and histologically with IS implants in fenestrated femoral cortices. Biocompatibility was demonstrated with IS implants in brushed, flushed femoral intramedullary spaces, eliciting no adverse, local, or systemic responses and with similar biocompatibility to K-wires in contralateral femurs up to 1 year post-implant.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2016
Percutaneous intramedullary fixation may provide an ideal method for stabilization of bone fractures, while avoiding the need for large tissue dissections. Tibiae in 18 sheep were treated with an intramedullary photodynamic bone stabilization system (PBSS) that comprised a polyethylene terephthalate (Dacron) balloon filled with a monomer, cured with visible light in situ, and then harvested at 30, 90, or 180 days. In additional 40 sheep, a midshaft tibial osteotomy was performed and stabilized with external fixators or external fixators combined with the PBSS and evaluated at 8, 12, and 26 weeks.
View Article and Find Full Text PDFAims: We sought to evaluate the incidence of embolic material in porcine brains following vascular interventions using hydrophilic-coated sheaths.
Methods And Results: A new self-expanding stent and delivery system (SDS) was deployed through a hydrophilic-coated (Flexor Ansel; Cook Medical, Bloomington, IN, USA) guiding sheath into the iliac and/or carotid arteries of 23 anaesthetised Yucatan mini swine. The animals were euthanised at three, 30, 90 and 180 days and their brains were removed for histological analysis.
Objective: We evaluated local and systemic pharmacokinetics and pharmacodynamics of sirolimus-eluting stents (SES) in canine cerebral vessels.
Methods: SES (1.5 x 8 mm, 79 microg/479 microg sirolimus) and control stents (1.
Background: Low vessel-wall shear stress promotes atherosclerosis and restenosis. We conducted serial analysis of vessel-wall shear stress following placement of metal and sirolimus (SRL) stents to determine the relationship between shear stress and neointima.
Methods: Serial quantitative coronary angiography, intracoronary ultrasound (IVUS), and Doppler flow analysis were performed at baseline, immediately poststent, and at 30 and 90 days on 16 stents (metal, n = 8; SRL, n = 8) implanted in the coronary arteries of eight miniswine.
Background: Stent-based delivery of sirolimus (SRL) has shown reduction in neointimal hyperplasia and restenosis. The purpose of this study was to evaluate the chronic vascular response and the expression of cell cycle regulators after SRL-eluting stent implantation in a porcine coronary model.
Methods: Forty-nine pigs underwent placement of 109 oversized stents (control, n=54, SRL (140 microg/cm(2)), n=55) in the coronary arteries with histologic analysis and Western blot (PCNA, p27(kip1), CD45, MCP-1, IL-2, IL-6, TNF-beta) at 3, 30, 90 or 180 days.
Percutaneous transluminal coronary angioplasty (PTCA) has become the main method of coronary revascularization. However, despite technical advancement, restenosis with incidence rate of 30 to 50% remains a major limitation to the long-term success of PTCA. The introduction of stents has significantly improved capability of interventional cardiology in treatment and prevention of restenosis.
View Article and Find Full Text PDFBackground: In-stent restenosis is caused by neointimal hyperplasia. Sirolimus (rapamycin; Wyeth Research, Radnor, Pennsylvania, USA) inhibits vascular smooth muscle cell proliferation and we evaluated the efficacy of sirolimus in reducing neointimal formation in a rabbit iliac model and in-vivo pharmacokinetics in the porcine coronary model.
Design: Randomized, blinded, prospective animal study.