Publications by authors named "Gregorio Valencia"

Transthyretin (TTR) modulates the deposition, processing, and toxicity of Abeta (Aβ) peptides. We have shown that this effect is enhanced in mice by treatment with small molecules such as iododiflunisal (IDIF, ), a good TTR stabilizer. Here, we describe the thermodynamics of the formation of binary and ternary complexes among TTR, Aβ(1-42) peptide, and TTR stabilizers using isothermal titration calorimetry (ITC).

View Article and Find Full Text PDF

It is well settled that the amyloidogenic properties of the plasma protein transporter transthyretin (TTR) can be modulated by compounds that stabilize its native tetrameric conformation. TTR is also present in cerebrospinal fluid where it can bind to Aβ-peptides and prevent Aβ aggregation. We have previously shown that treatment of Alzheimer's Disease (AD) model mice with iododiflunisal (IDIF), a TTR tetramer stabilizing compound, prevents AD pathologies.

View Article and Find Full Text PDF

Glycosylation of host and viral proteins is an important posttranslational modification needed to ensure correct function of glycoproteins. For this reason, we asked whether inhibition of O-glycosylation during human immunodeficiency virus (HIV) replication could affect HIV infectivity and replication rates. We used benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside (BAGN), a compound that has been widely used to inhibit Oglycosylation in several cell lines.

View Article and Find Full Text PDF

Several strategies against Alzheimer disease (AD) are directed to target Aβ-peptides. The ability of transthyretin (TTR) to bind Aβ-peptides and the positive effect exerted by some TTR stabilizers for modulating the TTR-Aβ interaction have been previously studied. Herein, key structural features of the interaction between TTR and the Aβ(12-28) peptide (3), the essential recognition element of Aβ, have been unravelled by STD-NMR spectroscopy methods in solution.

View Article and Find Full Text PDF

Glycosylation by simple sugars is a drug discovery alternative that has been explored with varying success for enhancing the potency and bioavailability of opioid peptides. Long ago we described two O-glycosides having either β-Glucose and β-Galactose of (d-Met, Pro)-enkephalinamide showing one of the highest antinociceptive activities known. Here, we report the resynthesis of these two analogs and the preparation of three novel neoglycopeptide derivatives (α-Mannose, β-Lactose and β-Cellobiose).

View Article and Find Full Text PDF

The dual inhibitory action of the pain related peptide opiorphin (H-Gln-Arg-Phe-Ser-Arg-OH) against neutral endopeptidase (NEP) and aminopeptidase N (AP-N) was further investigated by a SAR study involving minor modifications on the polar side chains of Arg residues and glycosylation with monosaccharides at Ser. None of them exerted dual or individual inhibitory potency superior than opiorphin. However, the correlations deduced offer further proof for the key role of these residues upon the binding and bioactive conformational stabilization of opiorphin.

View Article and Find Full Text PDF

Systematic halogenation of two native opioid peptides has shown that halogen atoms can modulate peptide-receptor interactions in different manners. First, halogens may produce a steric hindrance that reduces the binding of the peptide to the receptor. Second, chlorine, bromine, or iodine may improve peptide binding if their positive σ-hole forms a halogen bond interaction with negatively charged atoms of the protein.

View Article and Find Full Text PDF

Human μ-opioid receptor (hMOR) is a class-A G-protein-coupled receptor (GPCR), a prime therapeutic target for the management of moderate and severe pain. A chimeric form of the receptor has been cocrystallized with an opioid antagonist and resolved by X-ray diffraction; however, further direct structural analysis is still required to identify the active form of the receptor to facilitate the rational design of hMOR-selective agonist and antagonists with therapeutic potential. Toward this goal and in spite of the intrinsic difficulties posed by the highly hydrophobic transmembrane motives of hMOR, we have comprehensively characterized by mass spectrometry (MS) analysis the primary sequence of the functional hMOR.

View Article and Find Full Text PDF

Two series of iododiflunisal and diflunisal analogues have been obtained by using a two step sequential reaction solution-phase parallel synthesis. The synthesis combined an aqueous Suzuki-Miyaura cross-coupling and a mild electrophilic aromatic iodination step using a new polymer-supported iodonium version of Barluenga's reagent. From a selected set of 77 noniodinated and 77 iodinated diflunisal analogues, a subset of good transthyretin amyloid inhibitors has been obtained with improved turbidimetry inhibition constants, high binding affinity to transthyretin, and good selectivity for TTR compared to other thyroxine binding proteins.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia and now represents 50-70% of total dementia cases. Over the last two decades, transthyretin (TTR) has been associated with AD and, very recently, a novel concept of TTR stability has been established in vitro as a key factor in TTR/amyloid-β (Aβ) interaction. Small compounds, TTR stabilizers (usually non-steroid anti-inflammatory drugs), bind to the thyroxine (T4) central binding channel, increasing TTR tetrameric stability and TTR/Aβ interaction.

View Article and Find Full Text PDF

The amyloidogenic protein transthyretin (TTR) is thought to aggregate into amyloid fibrils by tetramer dissociation which can be inhibited by a number of small molecule compounds. Our analysis of a series of crystallographic protein-inhibitor complexes has shown no clear correlation between the observed molecular interactions and the in vitro activity of the inhibitors. From this analysis, it emerged that halogen bonding (XB) could be mediating some key interactions.

View Article and Find Full Text PDF

The conformational profiles for the endogenous peptide Opiorphin and a set of seven analogues exhibiting different inhibitory activities toward human aminopeptidase N (hAPN) and human neprilysin (hNEP) were independently computed to deduce a bioactive conformation that Opiorphin may adopt when binding these two enzymes. The conformational space was thoroughly sampled using an iterative simulated annealing protocol, and a library of low-energy conformers was generated for each peptide. Bioactive Opiorphin conformations fitting our experimental structure-activity relationship data were identified for hAPN and hNEP using computational pairwise comparisons between each of the unique low-energy conformations of Opiorphin and its analogues.

View Article and Find Full Text PDF

Toward developing new potential analgesics, this first structure-activity relationship study of opiorphin (H-Gln-Arg-Phe-Ser-Arg-OH), a human peptide inhibiting enkephalin degradation, was performed. A systematic Ala scanning proved that Phe(3) is a key residue for neprilysin and aminopeptidase N (AP-N) ectoenkephalinase inhibition. A series of Phe(3)-halogenated analogues revealed that halogen bonding based optimization strategies are not applicable to this residue.

View Article and Find Full Text PDF

To examine if the biological activity of the N/OFQ peptide, which is the native ligand of the pain-related and viable drug target NOP receptor, could be modulated by glycosylation and if such effects could be conformationally related, we have synthesized three N/OFQ glycopeptide analogues, namely: [Thr(5)-O-α-D-GalNAc-N/OFQ] (glycopeptide 1), [Ser(10)-O-α-D-GalNAc]-N/OFQ (glycopeptide 2) and [Ser(10)-O-β-D-GlcNAc]-N/OFQ] (glycopeptide 3). They were tested for biological activity in competition binding assays using the zebrafish animal model in which glycopeptide 2 exhibited a slightly improved binding affinity, whereas glycopeptide 1 showed a remarkably reduced binding affinity compared to the parent compound and glycopeptide 3. The structural analysis of these glycopeptides and the parent N/OFQ peptide by NMR and circular dichroism indicated that their aqueous solutions are mainly populated by random coil conformers.

View Article and Find Full Text PDF

The isatin core structure was found to be a novel chemical scaffold in transthyretin (TTR) fibrillogenesis inhibitor design. Among the series of isatin analogues prepared and tested, the nitro compound 1,3-dihydro-3-[(4-nitrophenyl)imino]-2H-indol-2-one (2r) is as potent as triiodophenol, which is one of the most active known TTR inhibitors. The E/Z stereochemistry of these molecules in solution, elucidated by (1)H NMR, does not influence their biological activity.

View Article and Find Full Text PDF

A synthetic mannoside derivative, namely, 6-morphinyl-alpha-D-mannopyranoside, shows a naloxone-reversible antinociception that is 100-fold more potent and twice as long lasting compared to morphine when administered intraperitoneally to rats in paw pressure and tail flick tests. The compound does not produce tolerance and binds to rat mu opioid receptors with twice the affinity of morphine. NMR studies suggest that differences of activity between the derivative and its parent compound M6G might be related to their differing molecular dynamic behavior.

View Article and Find Full Text PDF

The thyroid hormone and retinol transporter protein known as transthyretin (TTR) is in the origin of one of the 20 or so known amyloid diseases. TTR self assembles as a homotetramer leaving a central hydrophobic channel with two symmetrical binding sites. The aggregation pathway of TTR into amiloid fibrils is not yet well characterized but in vitro binding of thyroid hormones and other small organic molecules to TTR binding channel results in tetramer stabilization which prevents amyloid formation in an extent which is proportional to the binding constant.

View Article and Find Full Text PDF

An efficient arylation in water of tyrosine and phenylalanine side chains from unprotected iodopeptides is accomplished by using Suzuki-Miyaura cross-coupling processes. The method is compatible with the hydrophilic and thermolabile nature of biologically active peptides. Also of interest, the arylated tyrosine peptides can be accessed in one-pot mode starting from native peptides.

View Article and Find Full Text PDF

Transthyretin (TTR) is a plasma homotetrameric protein associated with senile systemic amyloidosis and familial amyloidotic polyneuropathy. In theses cases, TTR dissociation and misfolding induces the formation of amyloidogenic intermediates that assemble into toxic oligomeric species and lead to the formation of fibrils present in amyloid deposits. The four TTR monomers associate around a central hydrophobic channel where two thyroxine molecules can bind simultaneously.

View Article and Find Full Text PDF

Destabilization of the tetrameric fold of TTR (transthyretin) is important for aggregation of the protein which culminates in amyloid fibril formation. Many TTR mutations interfere with tetramer stability, increasing the amyloidogenic potential of the protein. The vast majority of proposed TTR fibrillogenesis inhibitors are based on in vitro assays with isolated protein, limiting their future use in clinical assays.

View Article and Find Full Text PDF

Iodination is a very useful method for protein characterization and labeling. However, derivatization chemistries used in most conventional iodination procedures may cause substantial alterations in protein structure and function. The IPy(2)BF(4) reagent [bis(pyridine)iodonium (I) tetrafluoroborate] has been shown to be an effective iodinating reagent for peptides.

View Article and Find Full Text PDF

Ex vivo and in vitro studies have revealed the remarkable amyloid inhibitory potency and specificity of iododiflunisal in relation to transthyretin [Almeida, Macedo, Cardoso, Alves, Valencia, Arsequell, Planas and Saraiva (2004) Biochem. J. 381, 351-356], a protein implicated in familial amyloidotic polyneuropathy.

View Article and Find Full Text PDF

In familial amyloidotic polyneuropathy, TTR (transthyretin) variants are deposited as amyloid fibrils. It is thought that this process involves TTR tetramer dissociation, which leads to partially unfolded monomers that aggregate and polymerize into amyloid fibrils. This process can be counteracted by stabilization of the tetramer.

View Article and Find Full Text PDF

By the coupling of octylamine to the uronic acid function of morphine-3-glucuronide (M3G) a new glycoconjugate (morphine-3-octylglucuronamide, M3GOAM) was prepared. When assayed in both rats and mice up to ng/kg (i.p.

View Article and Find Full Text PDF