Loss-of-function mutations in MEGF10 lead to a rare and understudied neuromuscular disorder known as MEGF10-related myopathy. There are no treatments for the progressive respiratory distress, motor impairment, and structural abnormalities in muscles caused by the loss of MEGF10 function. In this study, we deployed cellular and molecular assays to obtain additional insights about MEGF10-related myopathy in juvenile, young adult, and middle-aged Megf10 knockout (KO) mice.
View Article and Find Full Text PDFThe highly specialized nonmyelinating glial cells present at somatic peripheral nerve endings, known collectively as terminal Schwann cells (TSCs), play critical roles in the development, function and repair of their motor and sensory axon terminals and innervating tissue. Over the past decades, research efforts across various vertebrate species have revealed that while TSCs are a diverse group of cells, they share a number of features among them. In this review, we summarize the state-of-knowledge about each TSC type and explore the opportunities that TSCs provide to treat conditions that afflict peripheral axon terminals.
View Article and Find Full Text PDFAge-induced degeneration of the neuromuscular junction (NMJ) is associated with motor dysfunction and muscle atrophy. While the impact of aging on the NMJ presynapse and postsynapse is well-documented, little is known about the changes perisynaptic Schwann cells (PSCs), the synaptic glia of the NMJ, undergo during aging. Here, we examined PSCs in young, middle-aged, and old mice in three muscles with different susceptibility to aging.
View Article and Find Full Text PDFMicroglia have been found to acquire unique region-dependent deleterious features with age and diseases that contribute to neuronal dysfunction and degeneration in the brain. However, it remains unknown whether microglia exhibit similar phenotypic heterogeneity in the spinal cord. Here, we performed a regional analysis of spinal cord microglia in 3-, 16-, 23-, and 30-month-old mice.
View Article and Find Full Text PDFSpinal motor neurons have been implicated in the loss of motor function that occurs with advancing age. However, the cellular and molecular mechanisms that impair the function of these neurons during aging remain unknown. Here, we show that motor neurons do not die in old female and male mice, rhesus monkeys, and humans.
View Article and Find Full Text PDFNon-myelinating Schwann cells (NMSC) play important roles in peripheral nervous system formation and function. However, the molecular identity of these cells remains poorly defined. We provide evidence that Kir4.
View Article and Find Full Text PDFLynx1 is a glycosylphosphatidylinositol (GPI)-linked protein shown to affect synaptic plasticity through modulation of nicotinic acetylcholine receptor (nAChR) subtypes in the brain. Because of this function and structural similarity to α-bungarotoxin, which binds muscle-specific nAChRs with high affinity, Lynx1 is a promising candidate for modulating nAChRs in skeletal muscles. However, little is known about the expression and roles of Lynx1 in skeletal muscles and neuromuscular junctions (NMJs).
View Article and Find Full Text PDFmiRNAs are necessary for neuromuscular junction (NMJ) health; however, little is known about the proteins required for their activity in this regard. We examined expression of Argonaute 2 (Ago2) and miRNA biogenesis genes in skeletal muscles during development, following nerve injury and in the SOD1 ALS mouse model. We found that these genes are enriched in neonate muscles and in adult muscles following nerve injury.
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis (ALS) is a currently incurable disease that causes progressive motor neuron loss, paralysis and death. Skeletal muscle pathology occurs early during the course of ALS. It is characterized by impaired mitochondrial biogenesis, metabolic dysfunction and deterioration of the neuromuscular junction (NMJ), the synapse through which motor neurons communicate with muscles.
View Article and Find Full Text PDFDuring aging and neuromuscular diseases, there is a progressive loss of skeletal muscle volume and function impacting mobility and quality of life. Muscle loss is often associated with denervation and a loss of resident muscle stem cells (satellite cells or MuSCs); however, the relationship between MuSCs and innervation has not been established. Herein, we administered severe neuromuscular trauma to a transgenic murine model that permits MuSC lineage tracing.
View Article and Find Full Text PDFHevin and secreted protein acidic and rich in cysteine (SPARC) are highly homologous matricellular proteins that function in concert to guide the formation of brain synapses. Here, we investigated the role of these glycoproteins in neuromuscular junction (NMJ) maturation, stability, and repair following injury. Hevin and SPARC mRNA levels in developing (postnatal day 9), adult (postnatal days 90 and 120), and injured (fibular nerve crush) skeletal muscles were assessed with qPCR.
View Article and Find Full Text PDFKey Points: Impairment of muscle biogenesis contributes to the progression of Duchenne muscular dystrophy (DMD). As a muscle enriched microRNA that has been implicated in muscle biogenesis, the role of miR-133b in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD.
View Article and Find Full Text PDFPerisynaptic Schwann cells (PSCs) are specialized, non-myelinating, synaptic glia of the neuromuscular junction (NMJ), that participate in synapse development, function, maintenance, and repair. The study of PSCs has relied on an anatomy-based approach, as the identities of cell-specific PSC molecular markers have remained elusive. This limited approach has precluded our ability to isolate and genetically manipulate PSCs in a cell specific manner.
View Article and Find Full Text PDFIn addition to driving contraction of skeletal muscles, acetylcholine (ACh) acts as an anti-synaptogenic agent at neuromuscular junctions (NMJs). Previous studies suggest that aging is accompanied by increases in cholinergic activity at the NMJ, which may play a role in neuromuscular degeneration. In this study, we hypothesized that moderately and chronically reducing ACh could attenuate the deleterious effects of aging on NMJs and skeletal muscles.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2019
Connexin43 (Cx43; gene name GJA1) is the most ubiquitously expressed gap junction protein, and understanding of its regulation largely falls under transcription and post-translational modification. In addition to Cx43, Gja1 mRNA encodes internally translated isoforms regulating gap junction formation, whose expression is modulated by TGF-β. Here, using RLM-RACE, we identify distinct Gja1 transcripts differing only in 5' UTR length, of which two are upregulated during TGF-β exposure and hypoxia.
View Article and Find Full Text PDFThe musculoskeletal system includes skeletal muscles, bones and innervating axons from neurons in the central and peripheral nervous systems. Together, they form the largest structure in the body. They also initiate and coordinate locomotion, provide structural stability, and contribute to metabolism and homeostasis.
View Article and Find Full Text PDFAs the final output of the somatic nervous system, the neuromuscular junction (NMJ) is essential for all voluntary movements. The NMJ is also necessary for connected cells to function and survive. Because of this central role, much effort has been devoted to understanding the effects of aging, diseases, and injuries on the NMJ.
View Article and Find Full Text PDFThere is increased recognition that sensory neurons located in dorsal root ganglia (DRG) are affected in amyotrophic lateral sclerosis (ALS). However, it remains unknown whether ALS-inducing factors, other than mutant superoxide dismutase 1 (SOD1), directly affect sensory neurons. Here, we examined the effect of mutant TAR DNA-binding protein 1 (TDP43) on sensory neurons in culture and in vivo.
View Article and Find Full Text PDFSIRT1 is an NAD -dependent deacetylase that functions in a variety of cells and tissues to mitigate age-associated diseases. However, it remains unknown if SIRT1 also acts to prevent pathological changes that accrue in motor neurons during aging and amyotrophic lateral sclerosis (ALS). In this study, we show that SIRT1 expression decreases in the spinal cord of wild-type mice during normal aging.
View Article and Find Full Text PDFNeurochem Int
November 2018
Congenital myasthenic syndromes (CMS) result from reduced cholinergic transmission at neuromuscular junctions (NMJs). While the etiology of CMS varies, the disease is characterized by muscle weakness. To date, it remains unknown if CMS causes long-term and irreversible changes to skeletal muscles.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
September 2018
Members of the fibroblast growth factor (FGF) family are involved in a variety of cellular processes. In the nervous system, they affect the differentiation and migration of neurons, the formation and maturation of synapses, and the repair of neuronal circuits following insults. Because of the varied yet critical functions of FGF ligands, their availability and activity must be tightly regulated for the nervous system, as well as other tissues, to properly develop and function in adulthood.
View Article and Find Full Text PDFMotor function deteriorates with advancing age, increasing the risk of adverse health outcomes. While it is well established that skeletal muscles and neuromuscular junctions (NMJs) degenerate with increasing age, the effect of aging on α-motor neurons and their innervating synaptic inputs remains largely unknown. In this study, we examined the soma of α-motor neurons and innervating synaptic inputs in the spinal cord of aged rhesus monkeys and mice, two species with vastly different lifespans.
View Article and Find Full Text PDFBecause molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clock and PV-Cre; Clock mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
December 2017
Resveratrol and metformin have been shown to mimic some aspects of caloric restriction and exercise. However, it remains unknown if these molecules also slow age-related synaptic degeneration, as previously shown for caloric restriction and exercise. In this study, we examined the structural integrity of neuromuscular junctions (NMJs) in 2-year-old mice treated with resveratrol and metformin starting at 1 year of age.
View Article and Find Full Text PDF