In the face of habitat loss, preserving functional connectivity is essential to maintain genetic diversity and the demographic dynamics required for the viability of biotic communities. This requires knowledge of the dispersal behaviour of target species, which can be modelled as kernels, or probability density functions of dispersal distances at increasing geographic distances. We present an integrative approach to investigate the relationships between genetic connectivity and demographic parameters in organisms with low vagility focusing on five syntopic pond-breeding amphibians.
View Article and Find Full Text PDFContext: Robust assessment of functional connectivity in amphibian population networks is essential to address their global decline. The potential of graph theory to characterize connectivity among amphibian populations has already been confirmed, but the movement data on which modelled graphs rely are often scarce and inaccurate. While probabilistic methods that account for intraspecific variability in dispersal better reflect the biological reality of functional connectivity, they must be informed by systematically recorded individual movement data, which are difficult to obtain for secretive taxa like amphibians.
View Article and Find Full Text PDFSex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture-recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans.
View Article and Find Full Text PDFA set of 16 microsatellite markers was characterized for Lear's macaw (Anodorhynchus leari) using DNA samples from captive individuals. Extending this molecular toolkit, including the use of samples from wild individuals, is expected to provide the required power of resolution for pedigree inference of both wild and captive individuals, and could support research on the genetic structure of wild populations. We characterize a set of 15 microsatellite markers optimized for the Lear's macaw, developed from a microsatellite-enriched library in a three-step procedure.
View Article and Find Full Text PDFTelomere shortening with age has been documented in many organisms, but few studies have reported telomere length measurements in amphibians, and no information is available for growth after metamorphosis, nor in wild populations. We provide both cross-sectional and longitudinal evidence of net telomere attrition with age in a wild amphibian population of natterjack toads (). Based on age-estimation by skeletochronology and qPCR telomere length measurements in the framework of an individual-based monitoring programme, we confirmed telomere attrition in recaptured males.
View Article and Find Full Text PDFNatural populations often persist at the landscape scale as metapopulations, with breeding units (subpopulations) experiencing temporal extinction and recolonization events. Important parameters to forecast population viability in these systems include the ratio of the effective number of breeders (N ) to the total number of adults (N ) and migration rates among subpopulations. Here, we present the results of a 10-year integrative monitoring program of a metapopulation of the Iberian green frog (Pelophylax perezi) in central Spain.
View Article and Find Full Text PDFThe ratio of the effective number of breeders () to the adult census size (), /, approximates the departure from the standard capacity of a population to maintain genetic diversity in one reproductive season. This information is relevant for assessing population status, understanding evolutionary processes operating at local scales, and unraveling how life-history traits affect these processes. However, our knowledge on / ratios in nature is limited because estimation of both parameters is challenging.
View Article and Find Full Text PDFAccurate characterization of genetic diversity is essential for understanding population demography, predicting future trends and implementing efficient conservation policies. For that purpose, molecular markers are routinely developed for nonmodel species, but key questions regarding sampling design, such as calculation of minimum sample sizes or the effect of relatives in the sample, are often neglected. We used accumulation curves and sibship analyses to explore how these 2 factors affect marker performance in the characterization of genetic diversity.
View Article and Find Full Text PDF