The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats) has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF) technologies offer an interesting alternative to conventional processes for preparing biodiesel.
View Article and Find Full Text PDFDifferent nanostructured supports, based on 1-decyl-2-methyimidazolium cations covalently attached to a polystyrene divinylbenzene porous matrix, were used as carriers to immobilise Candida antarctica lipase B. The suitability of these immobilised lipase derivatives for the synthesis of biodiesel (methyl oleate) by the methanolysis of triolein has been tested in both tert-butanol and supercritical (sc)CO(2) (18 MPa, 45 °C) as reaction media. The use of modified supports with low ionic-liquid loading covalently attached to the main polymeric backbone chains provide structured materials that led to the best biodiesel yields (up to 95 %) and operational stability (85 % biodiesel yield after 45 cycles of 8-4 h) in scCO(2) (45 °C, 18 MPa).
View Article and Find Full Text PDF