Publications by authors named "Gregorio Nicolas"

By means of an RT-PCR approach we isolated a specific tyrosine phosphatase (FsPTP1) induced by abscisic acid (ABA) and correlated with seed dormancy in Fagus sylvatica seeds. To provide genetic evidence of FsPTP1 function in seed dormancy and ABA signal transduction pathway, we overexpressed this gene in Cape Verde Island ecotype of Arabidopsis thaliana, which shows the deepest degree of seed dormancy among Arabidopsis accessions. As a result, 35S:FsPTP1 transgenic seeds showed a reduced dormancy and insensitivity to ABA and osmotic stress conditions accompanied by a reduction in the level of expression of RAB18 and RD29, well-known ABA-responsive genes.

View Article and Find Full Text PDF

The functional protein phosphatase type 2C from beechnut (Fagus sylvatica; FsPP2C1) was a negative regulator of abscisic acid (ABA) signaling in seeds. In this report, to get deeper insight on FsPP2C1 function, we aim to identify PP2C-interacting partners. Two closely related members (PYL8/RCAR3 and PYL7/RCAR2) of the Arabidopsis (Arabidopsis thaliana) BetV I family were shown to bind FsPP2C1 in a yeast two-hybrid screening and in an ABA-independent manner.

View Article and Find Full Text PDF

Salicylic acid (SA) is a plant hormone mainly associated with the induction of defense mechanism in plants, although in the last years there is increasing evidence on the role of SA in plant responses to abiotic stress. We recently reported that an increase in endogenous SA levels are able to counteract the inhibitory effects of several abiotic stress conditions during germination and seedling establishment of Arabidopsis thaliana and that this effect is modulated by gibberellins (GAs) probably through a member of the GASA (Giberellic Acid Stimulated in Arabidopsis) gene family, clearly showing the existence of a cross talk between these two plant hormones in Arabidopsis.

View Article and Find Full Text PDF

Exogenous application of gibberellic acid (GA(3)) was able to reverse the inhibitory effect of salt, oxidative, and heat stresses in the germination and seedling establishment of Arabidopsis (Arabidopsis thaliana), this effect being accompanied by an increase in salicylic acid (SA) levels, a hormone that in recent years has been implicated in plant responses to abiotic stress. Furthermore, this treatment induced an increase in the expression levels of the isochorismate synthase1 and nonexpressor of PR1 genes, involved in SA biosynthesis and action, respectively. In addition, we proved that transgenic plants overexpressing a gibberellin (GA)-responsive gene from beechnut (Fagus sylvatica), coding for a member of the GA(3) stimulated in Arabidopsis (GASA) family (FsGASA4), showed a reduced GA dependence for growth and improved responses to salt, oxidative, and heat stress at the level of seed germination and seedling establishment.

View Article and Find Full Text PDF

A functional abscisic acid (ABA)-induced protein phosphatase type 2C (PP2C) was previously isolated from beech (Fagus sylvatica) seeds (FsPP2C2). Because transgenic work is not possible in beech, in this study we overexpressed this gene in Arabidopsis (Arabidopsis thaliana) to provide genetic evidence on FsPP2C2 function in seed dormancy and other plant responses. In contrast with other PP2Cs described so far, constitutive expression of FsPP2C2 in Arabidopsis, under the cauliflower mosaic virus 35S promoter, produced enhanced sensitivity to ABA and abiotic stress in seeds and vegetative tissues, dwarf phenotype, and delayed flowering, and all these effects were reversed by gibberellic acid application.

View Article and Find Full Text PDF

An abscisic acid (ABA)-induced cDNA fragment encoding a putative serine/threonine protein kinase (PK) was obtained by means of differential reverse transcriptase-polymerase chain reaction (RT-PCR). The full-length clone (FsPK4) was isolated from a cDNA library constructed using mRNA from ABA-treated Fagus sylvatica L. seeds.

View Article and Find Full Text PDF

An enzymatically active recombinant protein kinase, previously isolated and characterized in Fagus sylvatica L. dormant seeds (FsPK1), was used to obtain a specific polyclonal antibody against this protein. Immunoblotting and immunohistochemical analysis of FsPK1 protein in beech seeds showed a strong immunostaining in the nucleus of the cells located in the vascular tissue of the embryonic axis corresponding to the future apical meristem of the root.

View Article and Find Full Text PDF

In the present paper evidence is presented indicating that tyrosine dephosphorylation is a key regulatory mechanism in postgermination arrest of Arabidopsis thaliana L. seed development mediated by abscisic acid (ABA). By using phenylarsine oxide (PAO), an inhibitor of tyrosine phosphatases, the sensitivity to the inhibitory effect of ABA on seed germination is enhanced.

View Article and Find Full Text PDF

Gibberellin 20-oxidase (GA 20-oxidase) is an enzyme that catalyses the last three steps in the synthesis of active GAs and is a potential control point in the regulation of GA biosynthesis. Reverse transcriptase-polymerase chain reaction with degenerated oligonucleotides conserved among GA 20-oxidases was used to isolate a cDNA clone for this enzyme in Fagus sylvatica L. seeds.

View Article and Find Full Text PDF

FsPP2C1 was previously isolated from beech (Fagus sylvatica) seeds as a functional protein phosphatase type-2C (PP2C) with all the conserved features of these enzymes and high homology to ABI1, ABI2, and PP2CA, PP2Cs identified as negative regulators of ABA signaling. The expression of FsPP2C1 was induced upon abscisic acid (ABA) treatment and was also up-regulated during early weeks of stratification. Furthermore, this gene was specifically expressed in ABA-treated seeds and was hardly detectable in vegetative tissues.

View Article and Find Full Text PDF

Phosphorylation/dephosphorylation of proteins is a general mechanism of hormonal signal transduction, including ABA, and serine/threonine protein phosphatases 2C (PP2C, EC 3.1.3.

View Article and Find Full Text PDF

A full-length cDNA clone, named FsA1, has been isolated from a cDNA library constructed using mRNA from Fagus sylvatica L. dormant seeds (beechnuts). This clone shows high identity with members of the AAA superfamily, for ATPases Associated with a variety of cellular Activities, encoding subunit 8 of the 26S proteasome or Tat binding proteins (TBPs).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni067r8j751pdtu7gidd8bgfkgdiompq1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once