The accurate temporal analysis of muscle activations is of great importance in several research areas spanning from the assessment of altered muscle activation patterns in orthopaedic and neurological patients to the monitoring of their motor rehabilitation. Several studies have highlighted the challenge of understanding and interpreting muscle activation patterns due to the high cycle-by-cycle variability of the sEMG data. This makes it difficult to interpret results and to use sEMG signals in clinical practice.
View Article and Find Full Text PDFThe aim of this contribution is to present a segmentation method for the identification of voluntary movements from inertial data acquired through a single inertial measurement unit placed on the subject's wrist. Inertial data were recorded from 25 healthy subjects while performing 75 consecutive reach-to-grasp movements. The approach herein presented, called DynAMoS, is based on an adaptive thresholding step on the angular velocity norm, followed by a statistics-based post-processing on the movement duration distribution.
View Article and Find Full Text PDFGait analysis applications in clinics are still uncommon, for three main reasons: (1) the considerable time needed to prepare the subject for the examination; (2) the lack of user-independent tools; (3) the large variability of muscle activation patterns observed in healthy and pathological subjects. Numerical indices quantifying the muscle coordination of a subject could enable clinicians to identify patterns that deviate from those of a reference population and to follow the progress of the subject after surgery or completing a rehabilitation program. In this work, we present two user-independent indices.
View Article and Find Full Text PDF