Thermoelectric materials capable of converting heat into electrical energy are used in sustainable electric generators, whose efficiency has been normally increased with incorporation of new materials with high figure of merit (ZT) values. Because the performance of these thermoelectric generators (TEGs) also depends on device geometry, in this study we employ the finite element method to determine optimized geometries for highly efficient miniaturized TEGs. We investigated devices with similar fill factors but with different thermoelectric leg geometries (filled and hollow).
View Article and Find Full Text PDFAntibiotic discovery has experienced a severe slowdown in terms of discovery of new candidates. In vitro screening methods using phospholipids to model the bacterial membrane provide a route to identify molecules that specifically disrupt bacterial membranes causing cell death. Thanks to the electrically insulating properties of the major component of the cell membrane, phospholipids, electronic devices are highly suitable transducers of membrane disruption.
View Article and Find Full Text PDFThe brain is capable of massively parallel information processing while consuming only ∼1-100 fJ per synaptic event. Inspired by the efficiency of the brain, CMOS-based neural architectures and memristors are being developed for pattern recognition and machine learning. However, the volatility, design complexity and high supply voltages for CMOS architectures, and the stochastic and energy-costly switching of memristors complicate the path to achieve the interconnectivity, information density, and energy efficiency of the brain using either approach.
View Article and Find Full Text PDFThe electrical responses of a columnar liquid crystal (a diimidodiester derivative of benzo[ghi]perylene) deposited either by spin-coating or by thermal evaporation into a typical OLED device are compared. For the spin-coated film, homeotropic alignment was induced by thermal annealing, which enhanced the charge carrier mobility significantly. For the evaporated films, homeotropic alignment could not be obtained by annealing.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2014
Cost-effective, solution-processable organic photovoltaics (OPV) present an interesting alternative to inorganic silicon-based solar cells. However, one of the major remaining challenges of OPV devices is their lack of long-term operational stability, especially at elevated temperatures. The synthesis of a fullerene dumbbell and its use as an additive in the active layer of a PCDTBT:PCBM-based OPV device is reported.
View Article and Find Full Text PDFThe photo- and electroluminescent properties of single-layer two-component blends composed of one blue emitter polymer and one green emitter polymer were studied. The blue emitter, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(9,9-di-{5'-pentanyl}-fluorenyl-2,7-diyl)] (PFOFPen), was used as the matrix, and the green emitter, poly[(9,9-dihexylfluorenyl-2,7-diyl)-alt-co-(bithiophene)] (F6T2), was used as the guest. The F6T2 content in the blends varied from 0.
View Article and Find Full Text PDFA new tetracyclic lactam building block for polymer semiconductors is reported that was designed to combine the many favorable properties that larger fused and/or amide-containing building blocks can induce, including improved solid-state packing, high charge carrier mobility, and improved charge separation. Copolymerization with thiophene resulted in a semicrystalline conjugated polymer, PTNT, with a broad bandgap of 2.2 eV.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2013
Discotic molecules comprising a rigid aromatic core and flexible side chains have been promisingly applied in OLEDs as self-organizing organic semiconductors. Due to their potentially high charge carrier mobility along the columns, device performance can be readily improved by proper alignment of columns throughout the bulk. In the present work, the charge mobility was increased by 5 orders of magnitude due to homeotropic columnar ordering induced by the boundary interfaces during thermal annealing in the mesophase.
View Article and Find Full Text PDFColumnar liquid crystals are composed of disk-shaped aromatic molecules surrounded by flexible side chains, where molecules self-assemble in columns and thereby form large surface-oriented domains. These systems are known for their good charge and exciton transport along the columns, with mobilities approaching those of aromatic single crystals. Such semiconducting materials are promising for devices applications, since the output efficiency can be tuned by properly aligning columns.
View Article and Find Full Text PDF