Publications by authors named "Gregor Schiele"

This study presents a comprehensive workflow for developing and deploying Multi-Layer Perceptron (MLP)-based soft sensors on embedded FPGAs, addressing diverse deployment objectives. The proposed workflow extends our prior research by introducing greater model adaptability. It supports various configurations-spanning layer counts, neuron counts, and quantization bitwidths-to accommodate the constraints and capabilities of different FPGA platforms.

View Article and Find Full Text PDF

Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).

View Article and Find Full Text PDF

Modern brain-computer interfaces and neural implants allow interaction between the tissue, the user and the environment, where people suffer from neurodegenerative diseases or injuries.This interaction can be achieved by using penetrating/invasive microelectrodes for extracellular recordings and stimulation, such as Utah or Michigan arrays. The application-specific signal processing of the extracellular recording enables the detection of interactions and enables user interaction.

View Article and Find Full Text PDF

Cybersecurity is a challenge in the utilization of IoT devices. One of the main security functions that we need for IoT devices is authentication. In this work, we used physical unclonable function (PUF) technology to propose a lightweight authentication protocol for IoT devices with long lifetimes.

View Article and Find Full Text PDF

Attacks on Internet of Things (IoT) devices are on the rise. Physical Unclonable Functions (PUFs) are proposed as a robust and lightweight solution to secure IoT devices. The main advantage of a PUF compared to the current classical cryptographic solutions is its compatibility with IoT devices with limited computational resources.

View Article and Find Full Text PDF