Publications by authors named "Gregor Pieplow"

One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation.

View Article and Find Full Text PDF

We describe a simple mechanism of quantum friction for a particle moving parallel to a dielectric, based on a fully relativistic framework and the assumption of local equilibrium. The Cherenkov effect explains how the bare ground state becomes globally unstable and how fluctuations of the electromagnetic field and the particle's dipole are converted into pairs of excitations. Modeling the particle as a silver nano-sphere, we investigate the spectrum of the force and its velocity dependence.

View Article and Find Full Text PDF