Microbialites and peloids are commonly associated throughout the geologic record. Proterozoic carbonate megafacies are composed predominantly of micritic and peloidal limestones often interbedded with stromatolitic textures. The association is also common throughout carbonate ramps and platforms during the Phanerozoic.
View Article and Find Full Text PDFThis data article describes data of magnetic stratigraphy and anisotropy of isothermal remanent magnetization (AIRM) from "Magnetic properties of early Pliocene sediments from IODP Site U1467 (Maldives platform) reveal changes in the monsoon system" [1]. Acquisition of isothermal magnetization on pilot samples and anisotropy of isothermal remanent magnetization are reported as raw data; magnetostratigraphic data are reported as characteristic magnetization (ChRM).
View Article and Find Full Text PDFGreat Bahama Bank (GBB) is the principal location of the formation and accumulation of ooids (concentrically coated, sand-size carbonate grains) in the world today, and as such has been the focus of studies on all aspects of ooids for more than half a century. Our view from a close look at this vast body of literature coupled with our continuing interests stresses that biological mechanisms (microbially mediated organomineralization) are very important in the formation of ooids, whereas the controlling factor for the distribution and size of ooid sand bodies is the physical energy. Mapping and coring studies of the modern ooid sand bodies on GBB provide insight into the rock record from different perspectives.
View Article and Find Full Text PDFSubmarine slope failures are a likely cause for tsunami generation along the East Coast of the United States. Among potential source areas for such tsunamis are submarine landslides and margin collapses of Bahamian platforms. Numerical models of past events, which have been identified using high-resolution multibeam bathymetric data, reveal possible tsunami impact on Bimini, the Florida Keys, and northern Cuba.
View Article and Find Full Text PDFThe South Asian Monson (SAM) is one of the most intense climatic elements yet its initiation and variations are not well established. Dating the deposits of SAM wind-driven currents in IODP cores from the Maldives yields an age of 12. 9 Ma indicating an abrupt SAM onset, over a short period of 300 kyrs.
View Article and Find Full Text PDF