Publications by authors named "Gregor Nagel"

Background: Treatment with tumor-targeted toxins attempts to overcome the disadvantages of conventional cancer therapies by directing a drug's cytotoxic effect specifically towards cancer cells. However, success with targeted toxins has been hampered as the constructs commonly remain bound to the outside of the cell or, after receptor-mediated endocytosis, are either transported back to the cell surface or undergo degradation in lysosomes. Hence, solutions to ensure endosomal escape are an urgent need in treatment with targeted toxins.

View Article and Find Full Text PDF

Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H.

View Article and Find Full Text PDF

Simultaneous visualization and concentration quantification of molecules in biological tissue is an important though challenging goal. The advantages of fluorescence lifetime imaging microscopy (FLIM) for visualization, and electron paramagnetic resonance (EPR) spectroscopy for quantification are complementary. Their combination in a multiplexed approach promises a successful but ambitious strategy because of spin label-mediated fluorescence quenching.

View Article and Find Full Text PDF

Physiological barriers inside of tumor tissue often result in poor interstitial penetration and heterogeneous intratumoral distribution of nanoparticle-based drug delivery systems (DDS). Novel, matrix metalloproteinase (MMP)-sensitive peptide-crosslinked nanogels (pNGs) as multistage DDS are reported with a beneficial size reduction property to promote the process of deep tissue penetration. : The presented pNGs are based on a dendritic polyglycerol (dPG) scaffold crosslinked by a modified MMP-sensitive fluorogenic peptide.

View Article and Find Full Text PDF

The introduction of cleavable motifs by dynamic covalent chemistry is widely applied in the design of drug delivery systems (DDS) to introduce controlled release properties. Since the cleavable moieties can be triggered by various exogenous or endogenous stimuli, the choice of the linker has substantial implications on the performance of the DDS. Here, we present a pair of theranostic polymer conjugates (TPC) to study the influence of the cleavable bond on the cell-mediated drug release by a facile in vitro fluorescence assay.

View Article and Find Full Text PDF

Aim: To develop an acid-sensitive lipidated, doxorubicin (Dox) prodrug (C16-Dox) to be entrapped in lipid nanoemulsion (NE-C16-Dox) as a nanocarrier to treat breast cancer models (in vitro and in vivo).

Results: We report the efficacy of NE-C16-Dox in in vitro experiments, as well as the improved chemotherapeutic index and tumor-control efficacy compared with treatment with free Dox in an in vivo murine 4T1 breast cancer model. In addition, NE-C16-Dox allowed the use of a higher dose of Dox, acceptable biocompatibility and a significant reduction in lung metastasis.

View Article and Find Full Text PDF

Fluorescent turn-on probes combined with polymers have a broad range of applications, e.g. for intracellular sensing of ions, small molecules, or DNA.

View Article and Find Full Text PDF