Publications by authors named "Gregor Jotzu"

We study low-frequency linearly polarized laser-dressing in materials with valley (graphene and hexagonal-Boron-Nitride) and topological (Dirac- and Weyl-semimetals) properties. In Dirac-like linearly dispersing bands, the laser substantially moves the Dirac nodes away from their original position, and the movement direction can be fully controlled by rotating the laser polarization. We prove that this effect originates from band nonlinearities away from the Dirac nodes.

View Article and Find Full Text PDF

Periodic driving can be used to control the properties of a many-body state coherently and to realize phases that are not accessible in static systems. For example, exposing materials to intense laser pulses makes it possible to induce metal-insulator transitions, to control magnetic order and to generate transient superconducting behaviour well above the static transition temperature. However, pinning down the mechanisms underlying these phenomena is often difficult because the response of a material to irradiation is governed by complex, many-body dynamics.

View Article and Find Full Text PDF

We report on the observation of antiferromagnetic correlations of ultracold fermions in a variety of optical lattice geometries that are well described by the Hubbard model, including dimers, 1D chains, ladders, isolated and coupled honeycomb planes, as well as square and cubic lattices. The dependence of the strength of spin correlations on the specific geometry is experimentally studied by measuring the correlations along different lattice tunneling links, where a redistribution of correlations between the different lattice links is observed. By measuring the correlations in a crossover between distinct geometries, we demonstrate an effective reduction of the dimensionality for our atom numbers and temperatures.

View Article and Find Full Text PDF

We realize and study the ionic Hubbard model using an interacting two-component gas of fermionic atoms loaded into an optical lattice. The bipartite lattice has a honeycomb geometry with a staggered energy offset that explicitly breaks the inversion symmetry. Distinct density-ordered phases are identified using noise correlation measurements of the atomic momentum distribution.

View Article and Find Full Text PDF

We demonstrate a versatile method for creating state-dependent optical lattices by applying a magnetic field gradient modulated in time. This allows for tuning the relative amplitude and sign of the tunneling for different internal states. We observe substantially different momentum distributions depending on the spin state of fermionic ^{40}K atoms.

View Article and Find Full Text PDF

The Haldane model on a honeycomb lattice is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter. It describes a mechanism through which a quantum Hall effect can appear as an intrinsic property of a band structure, rather than being caused by an external magnetic field. Although physical implementation has been considered unlikely, the Haldane model has provided the conceptual basis for theoretical and experimental research exploring topological insulators and superconductors.

View Article and Find Full Text PDF

We study the anisotropic 3D Hubbard model with increased nearest-neighbor tunneling amplitudes along one direction using the dynamical cluster approximation and compare the results to a quantum simulation experiment of ultracold fermions in an optical lattice. We find that the short-range spin correlations are significantly enhanced in the direction with stronger tunneling amplitudes. Our results agree with the experimental observations and show that the experimental temperature is lower than the strong tunneling amplitude.

View Article and Find Full Text PDF

We create an artificial graphene system with tunable interactions and study the crossover from metallic to Mott insulating regimes, both in isolated and coupled two-dimensional honeycomb layers. The artificial graphene consists of a two-component spin mixture of an ultracold atomic Fermi gas loaded into a hexagonal optical lattice. For strong repulsive interactions, we observe a suppression of double occupancy and measure a gapped excitation spectrum.

View Article and Find Full Text PDF

Quantum magnetism originates from the exchange coupling between quantum mechanical spins. Here, we report on the observation of nearest-neighbor magnetic correlations emerging in the many-body state of a thermalized Fermi gas in an optical lattice. The key to obtaining short-range magnetic order is a local redistribution of entropy, which allows temperatures below the exchange energy for a subset of lattice bonds.

View Article and Find Full Text PDF

Dirac points are central to many phenomena in condensed-matter physics, from massless electrons in graphene to the emergence of conducting edge states in topological insulators. At a Dirac point, two energy bands intersect linearly and the electrons behave as relativistic Dirac fermions. In solids, the rigid structure of the material determines the mass and velocity of the electrons, as well as their interactions.

View Article and Find Full Text PDF