Publications by authors named "Gregor Huber"

Seed dormancy is a crucial developmental transition that affects the adaption and survival of plants. Arabidopsis DELAY OF GERMINATION 1 (DOG1) is known as a master regulator of seed dormancy. However, although several upstream factors of DOG1 have been reported, the exact regulation of DOG1 is not fully understood.

View Article and Find Full Text PDF

Legumes associate with root colonizing rhizobia that provide fixed nitrogen to its plant host in exchange for recently fixed carbon. There is a lack of understanding of how individual plants modulate carbon allocation to a nodulated root system as a dynamic response to abiotic stimuli. One reason is that most approaches are based on destructive sampling, making quantification of localised carbon allocation dynamics in the root system difficult.

View Article and Find Full Text PDF

We introduce a novel technique to measure volumes of any shaped objects based on acoustic components. The focus is on small objects with rough surfaces, such as plant seeds. The method allows measurement of object volumes more than 1000 times smaller than the volume of the sensor chamber with both high precision and high accuracy.

View Article and Find Full Text PDF

Studies of long-distance transport of tracer isotopes in plants offer a high potential for functional phenotyping, but so far measurement time is a bottleneck because continuous time series of at least 1 h are required to obtain reliable estimates of transport properties. Hence, usual throughput values are between 0.5 and 1 samples h.

View Article and Find Full Text PDF

Background: Flat-panel photo-bioreactors (PBRs) are customarily applied for investigating growth of microalgae. Optimal design and operation of such reactors is still a challenge due to complex non-linear combinations of various impact factors, particularly hydrodynamics, light irradiation, and cell metabolism. A detailed analysis of single-cell light reception can lead to novel insights into the complex interactions of light exposure and algae movement in the reactor.

View Article and Find Full Text PDF

Phototrophic bioprocesses are a promising puzzle piece in future bioeconomy concepts but yet mostly fail for economic reasons. Besides other aspects, this is mainly attributed to the omnipresent issue of optimal light supply impeding scale-up and -down of phototrophic processes according to classic established concepts. This MiniReview examines two current trends in photobiotechnology, namely microscale cultivation and modeling and simulation.

View Article and Find Full Text PDF

Growth of Chlorella vulgaris was characterized as a function of irradiance in a laboratory turbidostat (1L) and compared to batch growth in sunlit modules (5-25L) of the commercial NOVAgreen photobioreactor. The effects of variable sunlight and culture density were deconvoluted by a mathematical model. The analysis showed that algal growth was light-limited due to shading by external construction elements and due to light attenuation within the algal bags.

View Article and Find Full Text PDF

Compartmental models can be used for inverse modeling of long distance tracer transport experiments in plants. Such transport models describe axial convection and diffusion as well as exchange between compartments, and are defined by partial differential equations (PDEs). Since for inverse modeling, the forward simulation needs to be evaluated frequently, a fast PDE solver is required.

View Article and Find Full Text PDF

The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements.

View Article and Find Full Text PDF

Precise measurements of leaf vein traits are an important aspect of plant phenotyping for ecological and genetic research. Here, we present a powerful and user-friendly image analysis tool named phenoVein. It is dedicated to automated segmenting and analyzing of leaf veins in images acquired with different imaging modalities (microscope, macrophotography, etc.

View Article and Find Full Text PDF

Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously.

View Article and Find Full Text PDF

Studies of long-distance tracer transport in plants result in spatio-temporal data sets. Compartmental tracer transport models can be used to quantitatively characterize or compare such data sets derived from different experiments. Depending on the specific experimental situation it might be necessary to apply different models.

View Article and Find Full Text PDF

Carbon transport processes in plants can be followed non-invasively by repeated application of the short-lived positron-emitting radioisotope (11)C, a technique which has rarely been used with trees. Recently, positron emission tomography (PET) allowing 3D visualization has been adapted for use with plants. To investigate the effects of stem girdling on the flow of assimilates, leaves on first order branches of two-year-old oak (Quercus robur L.

View Article and Find Full Text PDF

Recent investigations of long-distance transport in plants using non-invasive tracer techniques such as (11)C radiolabeling monitored by positron emission tomography (PET) combined with magnetic resonance imaging (MRI) revealed the need of dedicated methods to allow a quantitative data analysis and comparison of such experiments. A mechanistic compartmental tracer transport model is presented, defined by a linear system of partial differential equations (PDEs). This model simplifies the complexity of axial transport and lateral exchanges in the transport pathways of plants (e.

View Article and Find Full Text PDF

The terrestrial hydrological cycle is strongly influenced by transpiration--water loss through the stomatal pores of leaves. In this report we present studies showing that the energy content of radiation absorbed by the leaf influences stomatal control of transpiration. This observation is at odds with current concepts of how stomata sense and control transpiration, and we suggest an alternative model.

View Article and Find Full Text PDF