Slow dynamics in an amorphous quasi-two-dimensional complex plasma, comprised of microparticles of two different sizes, was studied experimentally. The motion of individual particles was observed using video microscopy, and the self-part of the intermediate scattering function as well as the mean-squared particle displacement was calculated. The long-time structural relaxation reveals the characteristic behavior near the glass transition.
View Article and Find Full Text PDFObjective: Ear, nose and throat infections are among the most common reasons for absence from work. They are usually caused by various bacteria like Haemophilus influenzae, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes. Cold atmospheric plasma (CAP) can effectively eliminate even multi-resistant bacteria and has no cytotoxic or mutagenic effects on the mucosa when applied for less than 60s.
View Article and Find Full Text PDFIn ground-based experiments with complex (dusty) plasmas, charged microparticles are levitated against gravity by an electric field, which also drives ion flow in the parent gas. Existing analytical approaches to describe the electrostatic interaction between microparticles in such conditions generally ignore the field and ion-neutral collisions, assuming free ion flow with a certain approximation for the ion velocity distribution function (usually a shifted Maxwellian). We provide a comprehensive analysis of our previously proposed self-consistent kinetic theory including the field, ion-neutral collisions, and the corresponding ion velocity distribution.
View Article and Find Full Text PDFComplex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas.
View Article and Find Full Text PDFHead and neck squamous cell cancer (HNSCC) is the 7th most common cancer worldwide. Despite the development of new therapeutic agents such as monoclonal antibodies, prognosis did not change for the last decades. Cold atmospheric plasma (CAP) presents the most promising new technology in cancer treatment.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) has been gaining increasing interest as a new approach for the treatment of skin diseases or wounds. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. This study explored in vitro and in vivo whether CAP influences gene expression and molecular mechanisms in keratinocytes.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2014
Implications of the recently discovered effect of channeling of upstream extra particles for transport phenomena in a two-dimensional plasma crystal are discussed. Upstream particles levitated above the lattice layer and tended to move between the rows of lattice particles. An example of heat transport is considered, where upstream particles act as moving heat sources, which may lead to anomalous heat transport.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2014
The glass transition is investigated in three dimensions for single and double Yukawa potentials for the full range of control parameters. For vanishing screening parameter, the limit of the one-component plasma is obtained; for large screening parameters and high coupling strengths, the glass-transition properties cross over to the hard-sphere system. Between the two limits, the entire transition diagram can be described by analytical functions.
View Article and Find Full Text PDFThe Debye shielding of a charge immersed in a flowing plasma is an old classic problem. It has been given renewed attention in the last two decades in view of experiments with complex plasmas, where charged dust particles are often levitated in a region with strong ion flow. Efforts to describe the shielding of the dust particles in such conditions have been focused on the homogeneous plasma approximation, which ignores the substantial inhomogeneity of the levitation region.
View Article and Find Full Text PDFWe study the onset and characteristics of vortices in complex (dusty) plasmas using two-dimensional simulations in a setup modeled after the PK-3 Plus laboratory. A small number of microparticles initially self-arranges in a monolayer around the void. As additional particles are introduced, an extended system of vortices develops due to a nonzero curl of the plasma forces.
View Article and Find Full Text PDFCold atmospheric plasma (CAP) has the potential to interact with tissue or cells leading to fast, painless and efficient disinfection and furthermore has positive effects on wound healing and tissue regeneration. For clinical implementation it is necessary to examine how CAP improves wound healing and which molecular changes occur after the CAP treatment. In the present study we used the second generation MicroPlaSter ß® in analogy to the current clinical standard (2 min treatment time) in order to determine molecular changes induced by CAP using in vitro cell culture studies with human fibroblasts and an in vivo mouse skin wound healing model.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene.
View Article and Find Full Text PDFCold atmospheric plasma science is an innovative upcoming technology for the medical sector. The plasma composition and subsequent effects on cells, tissues and pathogens can vary enormously depending on the plasma source, the plasma settings and the ambient conditions. Cold atmospheric plasmas consist of a highly reactive mix of ions and electrons, reactive molecules, excited species, electric fields and to some extent also UV radiation.
View Article and Find Full Text PDFOver the past few years, the application of cold atmospheric plasma (CAP) in medicine has developed into an innovative field of research of rapidly growing importance. One promising new medical application of CAP is cancer treatment. Different studies revealed that CAP may potentially affect the cell cycle and cause cell apoptosis or necrosis in tumor cells dependent on the CAP device and doses.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2012
A self-consistent microscopic approach to calculate non-equilibrium pair correlations in strongly interacting driven binary mixtures is presented. The theory is derived from the many-body Smoluchowski equation for interacting Brownian particles by employing Kirkwood's superposition approximation as a closure relation. It is shown that the pair correlations can exhibit notable anisotropy and a strong tendency to laning in the driving direction.
View Article and Find Full Text PDFPhysical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2012
The fundamental higher-order Landau plasma modes are known to be generally heavily damped. We show that these modes for the ion component in a weakly ionized plasma can be substantially modified by ion-neutral collisions and a dc electric field driving ion flow so that some of them can become unstable. This instability is expected to naturally occur in presheaths of gas discharges at sufficiently small pressures and thus affect sheaths and discharge structures.
View Article and Find Full Text PDFNon-thermal plasma (NTP) is a flow of partially ionized argon gas at an ambient macroscopic temperature and is microbicidal for bacteria, viruses and fungi. Viability of the Gram-negative obligate intracellular bacterial parasite Chlamydia trachomatis and its host cells was investigated after NTP treatment. NTP treatment of C.
View Article and Find Full Text PDFMany effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities.
View Article and Find Full Text PDFWe demonstrate that the melting curves of various model systems of interacting particles collapse to (or are located very close to) a universal master curve on a plane of appropriately chosen scaled variables. The physics behind this universality is discussed. An equation for the emerging "universal melting curve" is proposed.
View Article and Find Full Text PDFAnalyzing three approximate methods to locate liquid-solid coexistence in simple systems, an observation is made that all of them predict the same functional dependence of the temperature on density at freezing and melting of the conventional Lennard-Jones (LJ) system. The emerging equations can be written as T=Aρ(4)+Bρ(2) in normalized units. We suggest to determine the values of the coefficients A at freezing and melting from the high-temperature limit, governed by the inverse 12th power repulsive potential.
View Article and Find Full Text PDFWe put forward an approximate method to locate the fluid-solid (freezing) phase transition in systems of classical particles interacting via a wide range of Lennard-Jones-type potentials. This method is based on the constancy of the properly normalized second derivative of the interaction potential (freezing indicator) along the freezing curve. As demonstrated recently it yields remarkably good agreement with previous numerical simulation studies of the conventional 12-6 Lennard-Jones (LJ) fluid [S.
View Article and Find Full Text PDFNon-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria.
View Article and Find Full Text PDFEnsembles of particles with a spherically symmetric repulsive Yukawa interaction and additional dipole-dipole interaction induced by an external field exhibit numerous solid-solid phase transitions controlled by the magnitude of the field. Such interactions emerge most notably in electro- and magnetorheological fluids and plasmas. We propose a simple variational approach based on the Bogoliubov inequality for determining equilibrium solid phases.
View Article and Find Full Text PDFMomentum transfer in complex plasmas (systems consisting of ions, electrons, neutrals, and charged macroscopic grains) is investigated assuming an interaction potential between the charged species of the screened Coulomb (Yukawa) type. Momentum transfer cross sections and rates are derived. Applications of the results are discussed; in particular, we classify the possible states of complex plasmas in terms of the momentum transfer due to grain-grain collisions and its competition with that due to interaction with the surrounding medium.
View Article and Find Full Text PDF