Publications by authors named "Gregoire Kuntz"

Pathogenic can cause leptospirosis: a widespread, potentially fatal bacterial zoonosis whose risk is mediated by the soil and water features, animal host distributions, meaning the local ecosystem. When human cases of leptospirosis occur, it is challenging to track down their source because ecosystem-level epidemiological knowledge on is needed. Between 2016 and 2019 in a focal riparian ecosystem, the human population experienced an outbreak and successive cases of leptospirosis attributable to L.

View Article and Find Full Text PDF

Copepods are essential components of marine food webs worldwide. In the North Atlantic, they are thought to perform vertical migration and to remain at depths more than 500 m during winter. We challenge this concept through a study of the winter feeding ecology of little auks (Alle alle), a highly abundant planktivorous seabird from the North Atlantic.

View Article and Find Full Text PDF

Worldwide fisheries generate large volumes of fishery waste and it is often assumed that this additional food is beneficial to populations of marine top-predators. We challenge this concept via a detailed study of foraging Cape gannets Morus capensis and of their feeding environment in the Benguela upwelling zone. The natural prey of Cape gannets (pelagic fishes) is depleted and birds now feed extensively on fishery wastes.

View Article and Find Full Text PDF

Most seabirds are visual hunters and are thus strongly affected by light levels. Dependence on vision should be problematic for species wintering at high latitudes, as they face very low light levels for extended periods during the Polar night. We examined the foraging rhythms of male great cormorants (Phalacrocorax carbo) wintering north of the Polar circle in West Greenland, conducting the first year-round recordings of the diving activity in a seabird wintering at high latitudes.

View Article and Find Full Text PDF

Warm-blooded diving animals wintering in polar regions are expected to show a high degree of morphological adaptation allowing efficient thermal insulation. In stark contrast to other marine mammals and seabirds living at high latitudes, Arctic great cormorants Phalacrocorax carbo have very limited thermal insulation because of their partly permeable plumage. They nonetheless winter in Greenland, where they are exposed to very low air and water temperatures.

View Article and Find Full Text PDF