Publications by authors named "Gregoire Danoy"

Identifying protein complexes in protein-protein interaction (ppi) networks is often handled as a community detection problem, with algorithms generally relying exclusively on the network topology for discovering a solution. The advancement of experimental techniques on ppi has motivated the generation of many Gene Ontology (go) databases. Incorporating the functionality extracted from go with the topological properties from the underlying ppi network yield a novel approach to identify protein complexes.

View Article and Find Full Text PDF

In this paper we present a surveillance system for early detection of escapers from a restricted area based on a new swarming mobility model called CROMM-MS (Chaotic Rössler Mobility Model for Multi-Swarms). CROMM-MS is designed for controlling the trajectories of heterogeneous multi-swarms of aerial, ground and marine unmanned vehicles with important features such as prioritising early detections and success rate. A new Competitive Coevolutionary Genetic Algorithm (CompCGA) is proposed to optimise the vehicles' parameters and escapers' evasion ability using a predator-prey approach.

View Article and Find Full Text PDF

Networks of collaboration are notoriously complex and the mechanisms underlying their evolution, although of high interest, are still not fully understood. In particular, collaboration networks can be used to model the interactions between scientists and analyze the circumstances that lead to successful research. This task is not trivial and conventional metrics, based on number of publications and number of citations of individual authors, may not be sufficient to provide a deep insight into the factors driving scientific success.

View Article and Find Full Text PDF

In this article, we propose a new mobility model, called Attractor Based Inter-Swarm collaborationS (ABISS), for improving the surveillance of restricted areas performed by unmanned autonomous vehicles. This approach uses different types of vehicles which explore an area of interest following unpredictable trajectories based on chaotic solutions of dynamic systems. Collaborations between vehicles are meant to cover some regions of the area which are unreachable by members of one swarm, e.

View Article and Find Full Text PDF

The rapid adoption of Internet of Things (IoT) has encouraged the integration of new connected devices such as Unmanned Aerial Vehicles (UAVs) to the ubiquitous network. UAVs promise a pragmatic solution to the limitations of existing terrestrial IoT infrastructure as well as bring new means of delivering IoT services through a wide range of applications. Owning to their potential, UAVs are expected to soon dominate the low-altitude airspace over populated cities.

View Article and Find Full Text PDF

Collaboration networks are defined as a set of individuals who come together and collaborate on particular tasks such as publishing a paper. The analysis of such networks permits to extract knowledge on the structure and patterns of communities. The link definition and network extraction have a high impact on the analysis of collaboration networks.

View Article and Find Full Text PDF

Background: Biomedical knowledge grows in complexity, and becomes encoded in network-based repositories, which include focused, expert-drawn diagrams, networks of evidence-based associations and established ontologies. Combining these structured information sources is an important computational challenge, as large graphs are difficult to analyze visually.

Results: We investigate knowledge discovery in manually curated and annotated molecular interaction diagrams.

View Article and Find Full Text PDF

Motivation: The root mean square deviation (RMSD) is one of the most used similarity criteria in structural biology and bioinformatics. Standard computation of the RMSD has a linear complexity with respect to the number of atoms in a molecule, making RMSD calculations time-consuming for the large-scale modeling applications, such as assessment of molecular docking predictions or clustering of spatially proximate molecular conformations. Previously, we introduced the RigidRMSD algorithm to compute the RMSD corresponding to the rigid-body motion of a molecule.

View Article and Find Full Text PDF