Herein, we describe a versatile immunoassay that uses biotinylated single-walled carbon nanotubes (SWNTs) as a Raman label, avidin-biotin chemistry to link targeting ligands to the label, and confocal Raman microscopy to image whole cells. Using a breast tumor cell model, we demonstrate the usefulness of the method to assess membrane receptor/ligand systems by evaluating a monoclonal antibody, Her-66, known to target the Her2 receptors that are overexpressed on these cells. We present two-dimensional Raman images of the cellular distribution of the SWNT labels corresponding to the distribution of the Her2 receptors in different focal planes through the cell with validation of the method using immunofluorescence microscopy, demonstrating that the Her-66-SWNT complexes were targeted to Her2 cell receptors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2013
Carbon nanotubes and materials based on carbon nanotubes have many perceived applications in the field of biomedicine. Several highly promising examples have been highlighted in the literature, ranging from their use as growth substrates or tissue scaffolds to acting as intracellular transporters for various therapeutic and diagnostic agents. In addition, carbon nanotubes have a strong optical absorption in the near-infrared region (in which tissue is transparent), which enables their use for biological imaging applications and photothermal ablation of tumors.
View Article and Find Full Text PDFThe electronic properties of carbon nanotubes can be altered significantly by modifying the nanotube surface. In this study, single-walled carbon nanotubes (SWCNTs) were functionalized noncovalently using designed surfactant peptides, and the resultant SWCNT electronic properties were investigated. These peptides have a common amino acid sequence of X(Valine)(5)(Lysine)(2), where X indicates an aromatic amino acid containing either an electron-donating or electron-withdrawing functional group (i.
View Article and Find Full Text PDFMany potential biological applications of single-walled carbon nanotubes (SWNTs) require their dispersion in aqueous conditions. Recently, Dieckmann et al. designed a series of reversible cyclic peptides (RCPs) which exist in linear or cyclized states through controlled formation of an intramolecular disulfide bond between terminal Cys residues.
View Article and Find Full Text PDFAlthough single-walled carbon nanotubes (SWNTs) have exciting properties and potential applications, their hydrophobic nature makes them difficult to purify and manipulate. To fully realize the potential of SWNTs, strategies for the effective dispersion, separation, and organization of these materials must be devised. In this article, work involving the recent design and characterization of reversible cyclic peptides (RCPs) and RCP/SWNT composites will be described.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWNTs) have unique properties and are projected to have a major impact in nanoscale electronics, materials science, and nanomedicine. Yet, these potential applications are hindered by the need for sample purification to separate SWNTs from each other and from metallic catalyst and amorphous carbon present in as-synthesized samples. Common purification strategies involve dispersing SWNTs as individual tubes in aqueous solution.
View Article and Find Full Text PDFMany potential applications of single-walled carbon nanotubes (SWNTs) require that they be isolated from one another. This may be accomplished through covalent or noncovalent SWNT functionalization. The noncovalent approach preserves the intrinsic electrical, optical, and mechanical properties of SWNTs and can be achieved by dispersing SWNTs in aqueous solution using surfactants, polymers, or biomacromolecules like DNA or polypeptides.
View Article and Find Full Text PDFWe have observed concentration dependent exfoliation of single-walled carbon nanotubes dispersed in solutions of the synthetic peptide nano-1. As the nanotube concentration is reduced, the bundle diameters tend to decrease before saturating at <2.0 nm for concentrations below 6 x 10(-3) mg/mL.
View Article and Find Full Text PDFA series of surfactant peptides were created to evaluate the affinity of aromatic AAs for single-walled carbon nanotubes in the absence of complications from peptide folding or self-association. Each surfactant peptide has a lipidlike architecture, with two Lys residues at the C-terminus as a hydrophilic head, five Val residues to form a hydrophobic tail, and the testing AA at the N-terminus. Raman and CD spectroscopic studies reveal that the surfactant peptides have a large unordered structural component which is independent of peptide concentration, suggesting that the peptides undergo minimal association under experimental conditions, thus removing this interference from interpretation of the peptide/carbon nanotube interactions.
View Article and Find Full Text PDFNano-1, a designed peptide, has been demonstrated to efficiently disperse individual single-walled carbon nanotubes (SWNTs) by folding into an amphiphilic alpha-helix wherein the phenylalanine (Phe) residues on the hydrophobic face of the helix interact via pi-stacking with the aromatic surface of the SWNT. In this study, the ability of electron-donating (hydroxyl) and electron-withdrawing (nitro) groups on the phenyl ring of Phe to affect the interactions between the peptide and SWNTs is examined by substituting the Phe residues in the nano-1 sequence with tyrosine and p-nitro-phenylalanine, respectively. Atomic force microscopy measurements and optical absorption spectroscopy revealed that the ability to disperse individual SWNTs increases with increasing electron density of the aromatic residue on the hydrophobic face of the amphiphilic helical peptides.
View Article and Find Full Text PDFThis work concerns exposing cultured human epithelial-like HeLa cells to single-walled carbon nanotubes (SWNTs) dispersed in cell culture media supplemented with serum. First, the as-received CoMoCAT SWNT-containing powder was characterized using scanning electron microscopy and thermal gravimetric analyses. Characterizations of the purified dispersions, termed DM-SWNTs, involved atomic force microscopy, inductively coupled plasma - mass spectrometry, and absorption and Raman spectroscopies.
View Article and Find Full Text PDFThe success of many projected applications of carbon nano-tubes (CNTs) to living cells, such as intracellular sensors and nanovectors, will depend on how many CNTs are taken up by cells. Here we report the enhanced uptake by HeLa cells of single-walled CNTs coated with a designed peptide termed nano-1. Atomic force microscopy showed that the dispersions were composed of individual and small bundles of nano-1 CNTs with 0.
View Article and Find Full Text PDFWe have previously demonstrated that a designed amphiphilic peptide helix, denoted nano-1, coats and debundles single-walled carbon nanotubes (SWNTs) and promotes the assembly of these coated SWNTs into novel hierarchical structures via peptide-peptide interactions. The purpose of this study is to better understand how aromatic content impacts interactions between peptides and SWNTs. We have designed a series of peptides, based on the nano-1 sequence, in which the aromatic content is systematically varied.
View Article and Find Full Text PDFWe have utilized reversible cyclic peptides (RCPs)-peptides containing alternating l- and d-amino acids with N- and C-termini derivatized with thiol-containing groups allowing reversible peptide cyclization-to solubilize and noncovalently functionalize carbon single-walled nanotubes (SWNTs) in aqueous solution. Solubilization occurs through wrapping of RCPs around the circumference of a SWNT, followed by the formation of head-to-tail covalent bonds, yielding closed rings on the nanotubes. By controlling the length of the RCPs, we have demonstrated limited diameter-selective solubilization of the SWNTs as revealed by UV/vis/NIR and Raman spectroscopies, as well as atomic force microscopy.
View Article and Find Full Text PDFCysteine-rich Zn(II)-binding sites in proteins serve two distinct functions: to template or stabilize specific protein folds, and to facilitate chemical reactions such as alkyl transfers. We are interested how the protein environment controls metal site properties, specifically, how naturally occurring tetrahedral Zn(II) sites are affected by the surrounding protein. We have studied the Co(II)- and Zn(II)-binding of a series of derivatives of L36, a small zinc ribbon protein containing a (Cys)(3)His metal coordination site.
View Article and Find Full Text PDFTwo challenges for effectively exploiting the remarkable properties of single-walled carbon nanotubes (SWNTs) are the isolation of intact individual nanotubes from the raw material and the assembly of these isolated SWNTs into useful structures. In this study, we present atomic force microscopy (AFM) evidence that we can isolate individual peptide-wrapped SWNTs, possibly connected end-to-end into long fibrillar structures, using an amphiphilic alpha-helical peptide, termed nano-1. Transmission electron microscopy (TEM) and well-resolved absorption spectral features further corroborate nano-1's ability to debundle SWNTs in aqueous solution.
View Article and Find Full Text PDFA general synthetic route to two DOTA-linked N-Fmoc amino acids (DOTA-F and DOTA-K) is described that allows insertion of DOTA at any endo-position within a peptide sequence. Three model pentapeptides were prepared to test the general utility of these derivatives in solid-phase peptide synthesis. Both DOTA derivatives reacted smoothly by means of standard HBTU activation chemistry to the point of insertion of the DOTA amino acid, but extension of the peptide chain beyond the DOTA-amino acid insertion required the use of pre-activated C-pentafluorophenyl ester N-alpha-Fmoc amino acids.
View Article and Find Full Text PDFCarbon nanotubes have properties potentially useful in diverse electrical and mechanical nanoscale devices and for making strong, light materials. However, carbon nanotubes are difficult to solubilize and organize into architectures necessary for many applications. In the present paper, we describe an amphiphilic alpha-helical peptide specifically designed not only to coat and solubilize carbon nanotubes, but also to control the assembly of the peptide-coated nanotubes into macromolecular structures through peptide-peptide interactions between adjacent peptide-wrapped nanotubes.
View Article and Find Full Text PDF