PNU-286607 is the first member of a promising, novel class of antibacterial agents that act by inhibiting bacterial DNA gyrase, a target of clinical significance. Importantly, PNU-286607 displays little cross-resistance with marketed antibacterial agents and is active against methicillin-resistant staphylococcus aureus (MRSA) and fluoroquinoline-resistant bacterial strains. Despite the apparent stereochemical complexity of this unique spirocyclic barbituric acid compound, the racemic core is accessible by a two-step route employing a relatively obscure rearrangement of vinyl anilines, known in the literature as the "tert-amino effect.
View Article and Find Full Text PDFQPT-1 was discovered in a compound library by high-throughput screening and triage for substances with whole-cell antibacterial activity. This totally synthetic compound is an unusual barbituric acid derivative whose activity resides in the (-)-enantiomer. QPT-1 had activity against a broad spectrum of pathogenic, antibiotic-resistant bacteria, was nontoxic to eukaryotic cells, and showed oral efficacy in a murine infection model, all before any medicinal chemistry optimization.
View Article and Find Full Text PDFThe discovery and initial optimization of a novel anthranilic acid derived class of antibacterial agents which suffered from extensive protein binding has been previously reported. The structure-activity relationships around the carboxylic acid substituent are described herein. This acid was replaced by several alternative functional groups in attempts to retain bioactivity while reducing protein binding.
View Article and Find Full Text PDFThe novel bacterial transcription/translation (TT) inhibitor 1 was identified through a combination of high throughput screening and exploratory medicinal chemistry. Initial optimization of the anthranilic acid moiety and sulfonamide amine diversity was accomplished via 1- and two-dimensional solution phase libraries, resulting in an improvement in the MIC of the lead from 64 to 8mug/mL (compound 4l). Subsequent modification of the central aromatic ring and further refinement of the sulfonamide amines required the development of a solid phase route on Wang resin.
View Article and Find Full Text PDF