Drugs that recapitulate aspects of the exercise adaptive response have the potential to provide better treatment for diseases associated with physical inactivity. We previously observed reduced skeletal muscle class IIa HDAC (histone deacetylase) transcriptional repressive activity during exercise. Here, we find that exercise-like adaptations are induced by skeletal muscle expression of class IIa HDAC mutants that cannot form a corepressor complex.
View Article and Find Full Text PDFClass IIa histone deacetylases repress transcription of target genes. However, their mechanism of action is poorly understood because they exhibit very low levels of deacetylase activity. The class IIa HDACs are associated with the SMRT/NCoR repression complexes and this may, at least in part, account for their repressive activity.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
January 2011
The genome of the enteric pathogen Campylobacter jejuni encodes a single glyceraldehyde-3-phosphate dehydrogenase that can utilize either NADP+ or NAD+ as coenzymes for the oxidative phosphorylation of glyceraldehyde-3-phosphate to 1,3-diphosphoglycerate. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of both the wild type and an active-site mutant of the enzyme are presented. Preliminary X-ray analysis revealed that in both cases the crystals diffracted to beyond 1.
View Article and Find Full Text PDF