In 1967 G.G. Simpson described three partial mandibles from early Miocene deposits in Kenya that he interpreted as belonging to a new strepsirrhine primate, Propotto.
View Article and Find Full Text PDFFossil bats from the Pliocene of Africa are extremely rare, especially in East Africa where meager records have been reported only from two localities in the Omo River Basin Shungura Formation and from a scattering of localities in the Afar Depression, both in Ethiopia. Here we report on a diverse assemblage of bats from Kanapoi in the Turkana Basin that date to approximately 4.19 million years ago.
View Article and Find Full Text PDFPrimates have long been a test case for the development of phylogenetic methods for divergence time estimation. Despite a large number of studies, however, the timing of origination of crown Primates relative to the Cretaceous-Paleogene (K-Pg) boundary and the timing of diversification of the main crown groups remain controversial. Here, we analysed a data set of 372 taxa (367 Primates and 5 outgroups, 3.
View Article and Find Full Text PDFA new genus and species of fossil bat is described from New Zealand's only pre-Pleistocene Cenozoic terrestrial fauna, the early Miocene St Bathans Fauna of Central Otago, South Island. Bayesian total evidence phylogenetic analysis places this new Southern Hemisphere taxon among the burrowing bats (mystacinids) of New Zealand and Australia, although its lower dentition also resembles Africa's endemic sucker-footed bats (myzopodids). As the first new bat genus to be added to New Zealand's fauna in more than 150 years, it provides new insight into the original diversity of chiropterans in Australasia.
View Article and Find Full Text PDFThe bat genus Myotis is represented by 120+ living species and 40+ extinct species and is found on every continent except Antarctica. The time of divergence of Myotis has been contentious as has the time and place of origin of its encompassing group the Vespertilionidae, the most diverse (450+ species) and widely distributed extant bat family. Fossil Myotis species are common, especially in Europe, beginning in the Miocene but earlier records are poor.
View Article and Find Full Text PDFMany discoveries in the life sciences have been made using material from living stock collections. These collections provide a uniform and stable supply of living organisms and related materials that enhance the reproducibility of research and minimize the need for repetitive calibration. While collections differ in many ways, they all require expertise in maintaining living organisms and good logistical systems for keeping track of stocks and fulfilling requests for specimens.
View Article and Find Full Text PDFPrimate species typically differ from other mammals in having bony canals that enclose the branches of the internal carotid artery (ICA) as they pass through the middle ear. The presence and relative size of these canals varies among major primate clades. As a result, differences in the anatomy of the canals for the promontorial and stapedial branches of the ICA have been cited as evidence of either haplorhine or strepsirrhine affinities among otherwise enigmatic early fossil euprimates.
View Article and Find Full Text PDFMyzopodidae is a family of bats today represented by two extant species of the genus Myzopoda that are restricted to the island of Madagascar. These bats possess uniquely derived adhesive pads on their thumbs and ankles that they use for clinging to smooth roosting surfaces. Only one fossil myzopodid has been reported previously, a humerus from Pleistocene deposits at Olduvai Gorge in Tanzania that was tentatively referred to the genus Myzopoda.
View Article and Find Full Text PDFMammals dominate modern terrestrial herbivore ecosystems, whereas extant herbivorous reptiles are limited in diversity and body size. The evolution of reptile herbivory and its relationship to mammalian diversification is poorly understood with respect to climate and the roles of predation pressure and competition for food resources. Here, we describe a giant fossil acrodontan lizard recovered with a diverse mammal assemblage from the late middle Eocene Pondaung Formation of Myanmar, which provides a historical test of factors controlling body size in herbivorous squamates.
View Article and Find Full Text PDFLaryngeal echolocation, used by most living bats to form images of their surroundings and to detect and capture flying prey, is considered to be a key innovation for the evolutionary success of bats, and palaeontologists have long sought osteological correlates of echolocation that can be used to infer the behaviour of fossil bats. Veselka et al. argued that the most reliable trait indicating echolocation capabilities in bats is an articulation between the stylohyal bone (part of the hyoid apparatus that supports the throat and larynx) and the tympanic bone, which forms the floor of the middle ear.
View Article and Find Full Text PDFIt is widely understood that Hominoidea (apes and humans) and Cercopithecoidea (Old World monkeys) have a common ancestry as Catarrhini deeply rooted in Afro-Arabia. The oldest stem Catarrhini in the fossil record are Propliopithecoidea, known from the late Eocene to early Oligocene epochs (roughly 35-30 Myr ago) of Egypt, Oman and possibly Angola. Genome-based estimates for divergence of hominoids and cercopithecoids range into the early Oligocene; however, the mid-to-late Oligocene interval from 30 to 23 Myr ago has yielded little fossil evidence documenting the morphology of the last common ancestor of hominoids and cercopithecoids, the timing of their divergence, or the relationship of early stem and crown catarrhines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2009
The modern effect of climate on plants and animals is well documented. Some have cautioned against assigning climate a direct role in Cenozoic land mammal faunal changes. We illustrate 3 episodes of significant mammalian reorganization in the Eocene of North America that are considered direct responses to dramatic climatic events.
View Article and Find Full Text PDFBats (Chiroptera) represent one of the largest and most diverse radiations of mammals, accounting for one-fifth of extant species. Although recent studies unambiguously support bat monophyly and consensus is rapidly emerging about evolutionary relationships among extant lineages, the fossil record of bats extends over 50 million years, and early evolution of the group remains poorly understood. Here we describe a new bat from the Early Eocene Green River Formation of Wyoming, USA, with features that are more primitive than seen in any previously known bat.
View Article and Find Full Text PDFRecent fossil discoveries, phylogenetic analyses, revised reconstructions of continental drift, and accumulating molecular evidence have all yielded new information relating to anthropoid origins within the broader context of primate evolution. There is an emerging consensus among molecular studies that four superorders of eutherian mammals can be recognized: Afrotheria, Euarchontoglires (to which primates belong), Laurasiatheria, and Xenarthra. Overall, molecular phylogenies for mammals agree with some statistical analyses of the primate fossil record in indicating an early origin for primates around 85 Ma ago, and the divergence of haplorhines and strepsirrhines at ca.
View Article and Find Full Text PDFUnderstanding the evolutionary history of canine sexual dimorphism is important for interpreting the developmental biology, socioecology and phylogenetic position of primates. All current evidence for extant primates indicates that canine dimorphism is achieved through bimaturism rather than via differences in rates of crown formation time. Using incremental growth lines, we charted the ontogeny of canine formation within species of Eocene Cantius, the earliest known canine-dimorphic primate, to test whether canine dimorphism via bimaturism was developmentally canalized early in primate evolution.
View Article and Find Full Text PDFAm J Phys Anthropol
April 2003
The history of primate paleontology in Asia is long and complex, beginning with the first discoveries of fossil primates on the Indian subcontinent in the early 1830's. The first Eocene mammals from Asia were collected in Myanmar and described in 1916, while the first primates, Pondaungia and Amphipithecus, were described in 1927 and 1937, respectively, both from the Pondaung Formation in Myanmar. For the next 60 years, these two Pondaung taxa remained as the only known Eocene primates from Myanmar and one of the few records of Eocene primates from all of Asia.
View Article and Find Full Text PDFRecent fieldwork in the Gardnerbuttean (earliest Bridgerian) sediments along the northeastern edge of the Green River Basin at South Pass, Wyoming, has yielded a large and diverse sample of omomyid (tarsiiform) primates. This assemblage includes two species each of Artimonius gen. nov.
View Article and Find Full Text PDFNotharctine adapiform primates are an abundant element of early (Wasatchian) and middle (Bridgerian) Eocene faunal assemblages from the western interior of North America. Early Eocene notharctine samples are dominated by Cantius with Pelycodus and Copelemur being much rarer and more restricted in their geographic distribution. Cantius is replaced in the middle Eocene by Notharctus and Smilodectes, both of which are common but less widespread, being best known from southwestern Wyoming.
View Article and Find Full Text PDF