Publications by authors named "Gregg A Swayze"

Cross Crater is a 65-km impact crater located in the Noachian highlands of the Terra Sirenum region of Mars. Geochemical modeling has indicated that alunite detected on the southwest wall of Cross Crater could have been formed by a fumarole upwelling into Cross Crater Lake and could indicate that an environment favorable to the development of life may have existed several billion years ago. Alunite did not form when Noachian precipitation reacted with basalt nor when the sediments and groundwater resulting from this reaction were reacted with a fumarole.

View Article and Find Full Text PDF

Ancient hydrothermal systems are a high-priority target for a future Mars sample return mission because they contain energy sources for microbes and can preserve organic materials (Farmer, 2000 ; MEPAG Next Decade Science Analysis Group, 2008 ; McLennan et al., 2012 ; Michalski et al., 2017 ).

View Article and Find Full Text PDF

Using fine spatial resolution (~7.6m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N=52,100 continuous features) binned into four thickness classes (≤50 μm but thicker than sheen, 50-200 μm, 200-1000 μm, and >1000 μm), the median lengths, widths, and length/width ratios of these classes ranged between 22 and 38 m, 7-11 m, and 2.

View Article and Find Full Text PDF

Future astrobiological missions to Mars are likely to emphasize the use of rovers with in situ petrologic capabilities for selecting the best samples at a site for in situ analysis with onboard lab instruments or for caching for potential return to Earth. Such observations are central to an understanding of the potential for past habitable conditions at a site and for identifying samples most likely to harbor fossil biosignatures. The Multispectral Microscopic Imager (MMI) provides multispectral reflectance images of geological samples at the microscale, where each image pixel is composed of a visible/shortwave infrared spectrum ranging from 0.

View Article and Find Full Text PDF

Geochemical models for Mars predict carbonate formation during aqueous alteration. Carbonate-bearing rocks had not previously been detected on Mars' surface, but Mars Reconnaissance Orbiter mapping reveals a regional rock layer with near-infrared spectral characteristics that are consistent with the presence of magnesium carbonate in the Nili Fossae region. The carbonate is closely associated with both phyllosilicate-bearing and olivine-rich rock units and probably formed during the Noachian or early Hesperian era from the alteration of olivine by either hydrothermal fluids or near-surface water.

View Article and Find Full Text PDF

Observations by the Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars in the Mawrth Vallis region show several phyllosilicate species, indicating a wide range of past aqueous activity. Iron/magnesium (Fe/Mg)-smectite is observed in light-toned outcrops that probably formed via aqueous alteration of basalt of the ancient cratered terrain. This unit is overlain by rocks rich in hydrated silica, montmorillonite, and kaolinite that may have formed via subsequent leaching of Fe and Mg through extended aqueous events or a change in aqueous chemistry.

View Article and Find Full Text PDF