Nanoparticles made of polylactide-poly(ethylene glycol) block-copolymer (PLA-PEG) are promising vehicles for drug delivery due to their biodegradability and controllable payload release. However, published data on the drug delivery properties of PLA-PEG nanoparticles are heterogeneous in terms of nanoparticle characteristics and mostly refer to low injected doses (a few mg nanoparticles per kg body weight). We have performed a comprehensive study of the biodistribution of nanoparticle formulations based on PLA-PEG nanoparticles of ~100nm size at injected doses of 30 to 140mg/kg body weight in healthy rats and nude tumor-bearing mice.
View Article and Find Full Text PDFThe translation of nanomedicines from concepts to commercial products has not reached its full potential, in part because of the technical and regulatory challenges associated with chemistry, manufacturing, and controls (CMC) development of such complex products. It is critical to take a quality by design (QbD) approach to developing nanomedicines-using a risk-based approach to identifying and classifying product attributes and process parameters and ultimately developing a deep understanding of the products, processes, and platform. This article exemplifies a QbD approach used by BIND Therapeutics, Inc.
View Article and Find Full Text PDFThe present studies were aimed at formulating AZD2811-loaded polylactic acid-polyethylene glycol (PLA-PEG) nanoparticles with adjustable release rates without altering the chemical structures of the polymer or active pharmaceutical ingredient (API). This was accomplished through the use of a hydrophobic ion pairing approach. A series of AZD2811-containing nanoparticles with a variety of hydrophobic counterions including oleic acid, 1-hydroxy-2-naphthoic acid, cholic acid, deoxycholic acid, dioctylsulfosuccinic acid, and pamoic acid is described.
View Article and Find Full Text PDFEfforts to apply nanotechnology in cancer have focused almost exclusively on the delivery of cytotoxic drugs to improve therapeutic index. There has been little consideration of molecularly targeted agents, in particular kinase inhibitors, which can also present considerable therapeutic index limitations. We describe the development of Accurin polymeric nanoparticles that encapsulate the clinical candidate AZD2811, an Aurora B kinase inhibitor, using an ion pairing approach.
View Article and Find Full Text PDFWe describe the development and clinical translation of a targeted polymeric nanoparticle (TNP) containing the chemotherapeutic docetaxel (DTXL) for the treatment of patients with solid tumors. DTXL-TNP is targeted to prostate-specific membrane antigen, a clinically validated tumor antigen expressed on prostate cancer cells and on the neovasculature of most nonprostate solid tumors. DTXL-TNP was developed from a combinatorial library of more than 100 TNP formulations varying with respect to particle size, targeting ligand density, surface hydrophilicity, drug loading, and drug release properties.
View Article and Find Full Text PDFPurpose: The purpose of this study was to demonstrate that surgically implanted, controlled-release, biodegradable polilactofate microspheres (Paclimer) can be used safely to bypass the blood-brain barrier and deliver paclitaxel to malignant brain tumors.
Experimental Design: The rate of paclitaxel release from Paclimer microspheres submerged in PBS was measured in vitro by high-performance liquid chromatography. In vivo studies of Paclimer were performed as intracranial implants in Fischer 344 rats in the presence or absence of 9L gliosarcoma.