Publications by authors named "Greg Stone"

The drive toward non-von Neumann device architectures has led to an intense focus on insulator-to-metal (IMT) and the converse metal-to-insulator (MIT) transitions. Studies of electric field-driven IMT in the prototypical VO thin-film channel devices are largely focused on the electrical and elastic responses of the films, but the response of the corresponding TiO substrate is often overlooked, since it is nominally expected to be electrically passive and elastically rigid. Here, in-operando spatiotemporal imaging of the coupled elastodynamics using X-ray diffraction microscopy of a VO film channel device on TiO substrate reveals two new surprises.

View Article and Find Full Text PDF

Octahedral tilts are the most ubiquitous distortions in perovskite-related structures that can dramatically influence ferroelectric, magnetic, and electronic properties; yet the paradigm of tilt epitaxy in thin films is barely explored. Non-destructively characterizing such epitaxy in three-dimensions for low symmetry complex tilt systems composed of light anions is a formidable challenge. Here we demonstrate that the interfacial tilt epitaxy can transform ultrathin calcium titanate, a non-polar earth-abundant mineral, into high-temperature polar oxides that last above 900 K.

View Article and Find Full Text PDF

Polar domains arise in insulating ferroelectrics when free carriers are unable to fully screen surface-bound charges. Recently discovered binary and ternary polar metals exhibit broken inversion symmetry coexisting with free electrons that might be expected to suppress the electrostatic driving force for domain formation. Contrary to this expectation, we report the first direct observation of polar domains in single crystals of the polar metal CaRuO.

View Article and Find Full Text PDF

Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO_{3} are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20×10^{6}  V/m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies.

View Article and Find Full Text PDF

Two-dimensional materials offer a remarkably rich materials platform to study the origin of different material behaviors at the atomic level, and doping provides a key means of tailoring such materials' functional properties. The local atomic structure around such dopants can be critically important in determining the material's behavior as it could modulate scattering, catalytic activity, electronic and magnetic properties, and so forth. Here, using aberration-corrected scanning transmission electron microscopy (STEM) with sub-Ångstrom resolution in conjunction with density functional theory calculations, we demonstrate a strong coupling between Mo dopants and two types of defects in WS monolayers: sulfur monovacancies and grain boundaries.

View Article and Find Full Text PDF

One synthetic modality for materials discovery proceeds by forming mixtures of two or more compounds. In transition metal oxides (TMOs), chemical substitution often obeys Vegard's principle, and the resulting structure and properties of the derived phase follow from its components. A change in the assembly of the components into a digital nanostructure, however, can stabilize new polymorphs and properties not observed in the constituents.

View Article and Find Full Text PDF

The spectrum of two-dimensional (2D) and layered materials 'beyond graphene' offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (∼5.0-6.

View Article and Find Full Text PDF

Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases.

View Article and Find Full Text PDF

Background: Carbapenems are frequently the last line of defence in serious infections due to multidrug-resistant Gram-negative bacteria, but their use is threatened by the growing prevalence of carbapenemase-producing pathogens. Ceftazidime-avibactam is a potential new agent for use in such infections. We aimed to assess the efficacy, safety, and tolerability of ceftazidime-avibactam compared with best available therapy in patients with complicated urinary tract infection or complicated intra-abdominal infection due to ceftazidime-resistant Gram-negative pathogens.

View Article and Find Full Text PDF

Aim: To investigate the efficacy of low-density lipoprotein (LDL) transport simulation in reconstructed arteries derived from computed tomography coronary angiography (CTCA) to predict coronary segments that are prone to progress.

Methods And Results: Thirty-two patients admitted with an acute coronary event who underwent 64-slice CTCA after percutaneous coronary intervention and at 3-year follow-up were included in the analysis. The CTCA data were used to reconstruct the coronary anatomy of the untreated vessels at baseline and follow-up, and LDL transport simulation was performed in the baseline models.

View Article and Find Full Text PDF

Background: When combined with ceftazidime, the novel non-β-lactam β-lactamase inhibitor avibactam provides a carbapenem alternative against multidrug-resistant infections. Efficacy and safety of ceftazidime-avibactam plus metronidazole were compared with meropenem in 1066 men and women with complicated intra-abdominal infections from 2 identical, randomized, double-blind phase 3 studies (NCT01499290 and NCT01500239).

Methods: The primary end point was clinical cure at test-of-cure visit 28-35 days after randomization, assessed by noninferiority of ceftazidime-avibactam plus metronidazole to meropenem in the microbiologically modified intention-to-treat (mMITT) population (in accordance with US Food and Drug Administration guidance), and the modified intention-to-treat and clinically evaluable populations (European Medicines Agency guidance).

View Article and Find Full Text PDF
Article Synopsis
  • The Phoenix Islands Protected Area (PIPA) in Kiribati is the largest and deepest UNESCO World Heritage site, serving as a model for marine conservation since its creation in 2008.
  • PIPA includes various marine habitats and benefits from a unique conservation contract system, ensuring sustainable funding and oversight for effective management.
  • The area's closure for full protection is crucial for assessing its success in conserving marine life, especially as global ocean resources are increasingly threatened by overfishing.
View Article and Find Full Text PDF
Article Synopsis
  • Dislocations significantly influence the mechanical, electronic, magnetic, and optical properties of crystals, with different behaviors in bulk versus two-dimensional materials.
  • In this study, dislocation motion, glide, and climb within a tungsten disulphide monolayer were examined, revealing a low-energy barrier for glide that facilitates grain boundary reconstruction.
  • Unique displacement dynamics observed in tungsten disulphide contrast with those in graphene and highlight how dislocations create substantial strain along grain boundaries and at dislocation cores.
View Article and Find Full Text PDF

A significant limitation of rechargeable lithium-ion batteries arises because most of the ionic current is carried by the anion, the ion that does not participate in energy-producing reactions. Single-ion-conducting block copolymer electrolytes, wherein all of the current is carried by the lithium cations, have the potential to dramatically improve battery performance. The relationship between ionic conductivity and morphology of single-ion-conducting poly(ethylene oxide)--polystyrenesulfonyllithium(trifluoromethylsulfonyl)imide (PEO-PSLiTFSI) diblock copolymers was studied by small-angle X-ray scattering and ac impedance spectroscopy.

View Article and Find Full Text PDF

Rotations of oxygen octahedra are ubiquitous, but they cannot break inversion symmetry in simple perovskites. However, in a layered oxide structure, this is possible, as we demonstrate here in A-site ordered Ruddlesden-Popper NaRTiO4 (R denotes rare-earth metal), previously believed to be centric. By revisiting this series via synchrotron x-ray diffraction, optical second-harmonic generation, piezoresponse force microscopy, and first-principles phonon calculations, we find that the low-temperature phase belongs to the acentric space group P42(1)m, which is piezoelectric and nonpolar.

View Article and Find Full Text PDF

We report changes in the Raman spectra at ferroelectric domain walls in near-stoichiometric LiNbO3 and stoichiometric LiTaO3. We find a decrease of intensity for the regular bulk Raman peaks along with increases of intensity in spectral regions that correspond to phonons, which propagate at an angle with respect to the incident light. In the backscattering geometry, such modes are not supported in the bulk crystal due to momentum conservation.

View Article and Find Full Text PDF

The main objective of this work is to study charge transport in mixtures of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) block copolymers and lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI). The P3HT-rich microphase conducts electronic charge, while the PEO-rich microphase conducts ionic charge. The nearly symmetric P3HT-PEO copolymer used in this study self-assembles into a lamellar phase.

View Article and Find Full Text PDF

Laser-fabrication of complex, highly oriented three-dimensional ferroelectric single crystal architecture with straight lines and bends is demonstrated in lanthanum borogermanate model glass using a high repetition rate femtosecond laser. Scanning micro-Raman microscopy shows that the c-axis of the ferroelectric crystal is aligned with the writing direction even after bending. A gradual rather than an abrupt transition is observed for the changing lattice orientation through bends up to approximately 14 degrees.

View Article and Find Full Text PDF

We report the discovery of a novel class of macrolide antibiotics that have improved antibacterial activity against Ery-resistant organisms.

View Article and Find Full Text PDF
Article Synopsis
  • A new series of 6-O-substituted homopropargyl ketolides was created and tested against bacteria that are resistant to erythromycin.
  • The compounds showed encouraging antibacterial effects in lab tests.
  • This research suggests potential for these new compounds to treat infections caused by resistant pathogens.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione2fr8j2uvs4t4denqrjkivqqgoh27ili): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once