Publications by authors named "Greg Stephens"

How do we capture the breadth of behavior in animal movement, from rapid body twitches to aging? Using high-resolution videos of the nematode worm , we show that a single dynamics connects posture-scale fluctuations with trajectory diffusion and longer-lived behavioral states. We take short posture sequences as an instantaneous behavioral measure, fixing the sequence length for maximal prediction. Within the space of posture sequences, we construct a fine-scale, maximum entropy partition so that transitions among microstates define a high-fidelity Markov model, which we also use as a means of principled coarse-graining.

View Article and Find Full Text PDF

Isolating slower dynamics from fast fluctuations has proven remarkably powerful, but how do we proceed from partial observations of dynamical systems for which we lack underlying equations? Here, we construct maximally predictive states by concatenating measurements in time, partitioning the resulting sequences using maximum entropy, and choosing the sequence length to maximize short-time predictive information. Transitions between these states yield a simple approximation of the transfer operator, which we use to reveal timescale separation and long-lived collective modes through the operator spectrum. Applicable to both deterministic and stochastic processes, we illustrate our approach through partial observations of the Lorenz system and the stochastic dynamics of a particle in a double-well potential.

View Article and Find Full Text PDF

While stress reactions can emerge long after the triggering event, it remains elusive how they emerge after a protracted, seemingly stress-free period during which stress incubates. Here, we study the behavioral development in mice isolated after observing an aggressive encounter inflicted upon their pair-housed partners. We developed a spatially resolved fine-scale behavioral analysis and applied it to standard behavioral tests.

View Article and Find Full Text PDF

An important model system for understanding genes, neurons and behavior, the nematode worm C. elegans naturally moves through a variety of complex postures, for which estimation from video data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estimation in C.

View Article and Find Full Text PDF

Honeybee swarms are a landmark example of collective behavior. To become a coherent swarm, bees locate their queen by tracking her pheromones. But how can distant individuals exploit these chemical signals, which decay rapidly in space and time? Here, we combine a behavioral assay with the machine vision detection of organism location and scenting (pheromone propagation via wing fanning) behavior to track the search and aggregation dynamics of the honeybee L.

View Article and Find Full Text PDF

From cells in tissue, to bird flocks, to human crowds, living systems display a stunning variety of collective behaviors. Yet quantifying such phenomena first requires tracking a significant fraction of the group members in natural conditions, a substantial and ongoing challenge. We present a comprehensive, computational method for tracking an entire colony of the honey bee Apis mellifera using high-resolution video on a natural honeycomb background.

View Article and Find Full Text PDF

Time-lapse microscopy is routinely used to follow cells within organoids, allowing direct study of division and differentiation patterns. There is an increasing interest in cell tracking in organoids, which makes it possible to study their growth and homeostasis at the single-cell level. As tracking these cells by hand is prohibitively time consuming, automation using a computer program is required.

View Article and Find Full Text PDF

The reliable detection of environmental molecules in the presence of noise is an important cellular function, yet the underlying computational mechanisms are not well understood. We introduce a model of two interacting sensors which allows for the principled exploration of signal statistics, cooperation strategies and the role of energy consumption in optimal sensing, quantified through the mutual information between the signal and the sensors. Here we report that in general the optimal sensing strategy depends both on the noise level and the statistics of the signals.

View Article and Find Full Text PDF

A quantitative understanding of organism-level behaviour requires predictive models that can capture the richness of behavioural phenotypes, yet are simple enough to connect with underlying mechanistic processes. Here, we investigate the motile behaviour of nematodes at the level of their translational motion on surfaces driven by undulatory propulsion. We broadly sample the nematode behavioural repertoire by measuring motile trajectories of the canonical laboratory strain Caenorhabditis elegans N2 as well as wild strains and distant species.

View Article and Find Full Text PDF

The dynamics of complex systems generally include high-dimensional, nonstationary, and nonlinear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties, we detail an approach based on local linear models within windows determined adaptively from data. While the dynamics within each window are simple, consisting of exponential decay, growth, and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series.

View Article and Find Full Text PDF

A deterministic population dynamics model involving birth and death for a two-species system, comprising a wild-type and more resistant species competing via logistic growth, is subjected to two distinct stress environments designed to mimic those that would typically be induced by temporal variation in the concentration of a drug (antibiotic or chemotherapeutic) as it permeates through the population and is progressively degraded. Different treatment regimes, involving single or periodical doses, are evaluated in terms of the minimal population size (a measure of the extinction probability), and the population composition (a measure of the selection pressure for resistance or tolerance during the treatment). We show that there exist timescales over which the low-stress regime is as effective as the high-stress regime, due to the competition between the two species.

View Article and Find Full Text PDF

With the advent of online networks, societies have become substantially more interconnected with individual members able to easily both maintain and modify their own social links. Here, we show that active network maintenance exposes agents to confirmation bias, the tendency to confirm one's beliefs, and we explore how this bias affects collective opinion formation. We introduce a model of binary opinion dynamics on a complex, fluctuating network with stochastic rewiring and we analyze these dynamics in the mean-field limit of large networks and fast link rewiring.

View Article and Find Full Text PDF

We exploit the reduced space of C. elegans postures to develop a novel tracking algorithm which captures both simple shapes and also self-occluding coils, an important, yet unexplored, component of 2D worm behavior. We apply our algorithm to show that visually complex, coiled sequences are a superposition of two simpler patterns: the body wave dynamics and a head-curvature pulse.

View Article and Find Full Text PDF

Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

To understand DNA elasticity at high forces (F>30  pN), its helical nature must be taken into account, as a coupling between twist and stretch. The prevailing model, the wormlike chain, was previously extended to include this twist-stretch coupling. Motivated by DNA's charged nature, and the known effects of ionic charges on its elasticity, we set out to systematically measure the impact of buffer ionic conditions on twist-stretch coupling.

View Article and Find Full Text PDF

We use functional magnetic resonance imaging (fMRI) to analyze neural responses to natural auditory stimuli. We characterize the fMRI time series through the shape of the voxel power spectrum and find that the timescales of neural dynamics vary along a spatial gradient, with faster dynamics in early auditory cortex and slower dynamics in higher order brain regions. The timescale gradient is observed through the unsupervised clustering of the power spectra of individual brains, both in the presence and absence of a stimulus, and is enhanced in the stimulus-locked component that is shared across listeners.

View Article and Find Full Text PDF

The scale invariance of natural images suggests an analogy to the statistical mechanics of physical systems at a critical point. Here we examine the distribution of pixels in small image patches and show how to construct the corresponding thermodynamics. We find evidence for criticality in a diverging specific heat, which corresponds to large fluctuations in how "surprising" we find individual images, and in the quantitative form of the entropy vs energy.

View Article and Find Full Text PDF

We have developed instrumentation, image processing, and data analysis techniques to quantify the locomotory behavior of C. elegans as it crawls on the surface of an agar plate. For the study of the genetic, biochemical, and neuronal basis of behavior, C.

View Article and Find Full Text PDF

Background: The nervous functions of an organism are primarily reflected in the behavior it is capable of. Measuring behavior quantitatively, at high-resolution and in an automated fashion provides valuable information about the underlying neural circuit computation. Accordingly, computer-vision applications for animal tracking are becoming a key complementary toolkit to genetic, molecular and electrophysiological characterization in systems neuroscience.

View Article and Find Full Text PDF

The ability to respond to chemical stimuli is fundamental to the survival of motile organisms, but the strategies underlying odour tracking remain poorly understood. Here we show that chemotaxis in Drosophila melanogaster larvae is an active sampling process analogous to sniffing in vertebrates. Combining computer-vision algorithms with reconstructed olfactory environments, we establish that larvae orient in odour gradients through a sequential organization of stereotypical behaviours, including runs, stops, lateral head casts and directed turns.

View Article and Find Full Text PDF

Animal behaviors often are decomposable into discrete, stereotyped elements, well separated in time. In one model, such behaviors are triggered by specific commands; in the extreme case, the discreteness of behavior is traced to the discreteness of action potentials in the individual command neurons. Here, we use the crawling behavior of the nematode Caenorhabditis elegans to demonstrate the opposite view, in which discreteness, stereotypy, and long timescales emerge from the collective dynamics of the behavior itself.

View Article and Find Full Text PDF

What fascinates us about animal behavior is its richness and complexity, but understanding behavior and its neural basis requires a simpler description. Traditionally, simplification has been imposed by training animals to engage in a limited set of behaviors, by hand scoring behaviors into discrete classes, or by limiting the sensory experience of the organism. An alternative is to ask whether we can search through the dynamics of natural behaviors to find explicit evidence that these behaviors are simpler than they might have been.

View Article and Find Full Text PDF

Organisms move through the world by changing their shape, and here we explore the mapping from shape space to movements in the nematode Caenorhabditis elegans as it crawls on an agar plate. We characterize the statistics of the trajectories through the correlation functions of the orientation angular velocity, orientation angle and the mean-squared displacement, and we find that the loss of orientational memory has significant contributions from both abrupt, large amplitude turning events and the continuous dynamics between these events. Further, we discover long-time persistence of orientational memory in the intervals between abrupt turns.

View Article and Find Full Text PDF