Green fluorescent protein (GFP) technology is rapidly advancing the study of morphogenesis, by allowing researchers to specifically focus on a subset of labeled cells within the living embryo. However, when imaging GFP-labeled cells using confocal microscopy, it is often essential to simultaneously visualize all of the cells in the embryo using dual-channel fluorescence to provide an embryological context for the cells expressing GFP. Although various counterstains are available, part of their fluorescence overlaps with the GFP emission spectra, making it difficult to clearly identify the cells expressing GFP.
View Article and Find Full Text PDFScientists who study zebrafish currently have an acute need to increase the rate of visual data exchange within their international community. Although the Internet has provided a revolutionary transformation of information exchange, the Internet is at present unable to serve as a vehicle for the efficient exchange of massive amounts of visual information. Much like an overburdened public water system, the Internet has inherent limits to the services it can provide.
View Article and Find Full Text PDF