Publications by authors named "Greg Slater"

Characterizing deep subsurface microbial communities informs our understanding of Earth's biogeochemistry as well as the search for life beyond the Earth. Here we characterized microbial communities within the Kidd Creek Observatory subsurface fracture water system with mean residence times of hundreds of millions to over one billion years. 16S rRNA analysis revealed that biosamplers well isolated from the mine environment were dominated by a putatively anaerobic and halophilic bacterial species from the family, Frackibacter.

View Article and Find Full Text PDF

This study uses mobile monitoring to gain a better understanding of particulate matter (PM) sources in two areas of Central and Outer London, UK. We find that, unlike emissions of nitrogen oxides (NO + NO = NO), which are elevated in Central London due to the high number of diesel vehicles and congestion, fine particulate matter (PM) emissions are well-controlled. This finding provides evidence for the effectiveness of vehicle particulate filters, supporting the view that their widespread adoption has mitigated PM emissions, even in the highly dieselized area of Central London.

View Article and Find Full Text PDF

The Materials Corrosion Test (MaCoTe) at the Underground Research Laboratory in Grimsel, Switzerland, assesses the microbiology and corrosion behavior of engineered barrier components of a deep geological repository (DGR) for long-term disposal of high-level nuclear waste. Diversity and temporal changes of bentonite-associated microbial community profiles were assessed under DGR-like conditions for compacted Wyoming MX-80 bentonite (1.25 g/cm and 1.

View Article and Find Full Text PDF

Water-capped tailings technology (WCTT) is a key component of the reclamation strategies in the Athabasca oil sands region (AOSR) of northeastern Alberta, Canada. The release of microbial methane from tailings emplaced within oil sands pit lakes, and its subsequent microbial oxidation, could inhibit the development of persistent oxygen concentrations within the water column, which are critical to the success of this reclamation approach. Here, we describe the results of a four-year (2015-2018) chemical and isotopic (δC) investigation into the dynamics of microbial methane cycling within Base Mine Lake (BML), the first full-scale pit lake commissioned in the AOSR.

View Article and Find Full Text PDF

Characterizing the microbiology of swelling bentonite clays can help predict the long-term behaviour of deep geological repositories (DGRs), which are proposed as a solution for the management of used nuclear fuel worldwide. Such swelling clays represent an important component of several proposed engineered barrier system designs and, although cultivation-based assessments of bentonite clay are routinely conducted, direct nucleic acid detection from these materials has been difficult due to technical challenges. In this study, we generated direct comparisons of microbial abundance and diversity captured by cultivation and direct nucleic acid analyses using 15 reference bentonite clay samples.

View Article and Find Full Text PDF

Understanding the distribution of trace organic material in a rocky environment is a key to constraining the material requirements for sustaining microbial life. We used an ultraviolet laser-induced fluorescence (LIF) spectroscopy instrument to characterize the distribution of organic biosignatures in basalts collected from two Mars-analog environments. We correlated the fluorescence results with alteration-related sample properties.

View Article and Find Full Text PDF

The early evidence of domesticated animals and human-animal interaction in South Asia can be traced back to the seventh millennium BCE; however, our understanding of their use is incomplete and limited to the analysis of animal bones from archaeological sites. By the third millennium BCE with the emergence of the Indus Civilization, cattle and water-buffalo became the primary domesticates and outnumbered any other animals at the majority of the Indus settlements. Based on the analysis of skeletal remains and ethnographic data, a number of studies have suggested that cattle and water-buffalo were utilized for their meat, dairy, hides, and other labor-oriented jobs.

View Article and Find Full Text PDF

Freshwater microbialites (i.e., lithifying microbial mats) are quite rare in northern latitudes of the North American continent, with two lakes (Pavilion and Kelly Lakes) of southeastern BC containing a morphological variety of such structures.

View Article and Find Full Text PDF

Boreal peatlands provide critical global and regional ecosystem functions including climate regulation and nutrient and water retention. Wildfire represents the largest disturbance to these ecosystems. Peatland resilience depends greatly on the extent of post-fire peat soil hydrophobicity.

View Article and Find Full Text PDF

To assess the microbiology and corrosion potential of engineered components of a deep geological repository for long-term storage of high-level nuclear waste, the Materials Corrosion Test is being conducted at the Underground Research Laboratory in Grimsel, Switzerland. Modules containing metal coupons surrounded by highly compacted MX-80 bentonite, at two dry densities (1.25 and 1.

View Article and Find Full Text PDF

Short-term and long-term science plans were developed as part of the strategic planning process used by the Biologic Analog Science Associated with Lava Terrains (BASALT) science team to conduct two Mars-simulation missions investigating basalt habitability at terrestrial volcanic analog sites in 2016. A multidisciplinary team of scientists generated and codified a range of scientific hypotheses distilled into a Science Traceability Matrix (STM) that defined the set of objectives pursued in a series of extravehicular activity (EVA) campaigns performed across multiple field deployments. This STM was used to guide the pre-deployment selection of sampling stations within the selected Mars analog sites on the Earth based on precursor site information such as multispectral imagery.

View Article and Find Full Text PDF

Members of the genus are found in diverse environments from marine, freshwaters, permafrost to hot springs. can grow in a wide range of temperature, pH, salinity, and heavy-metal concentrations. We characterized strain RW2 isolated from a permanently cold freshwater microbialite in Pavilion Lake, British Columbia using metabolic assays, genomics, comparative genomics, phylogenetics, and fatty acid composition.

View Article and Find Full Text PDF

Members of the bacterial genus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus from freshwater microbialites in Pavilion Lake, British Columbia, Canada.

View Article and Find Full Text PDF

This study reports the first application of comprehensive two-dimensional gas chromatography coupled to a high-resolution quadrupole time-of-flight mass spectrometer (GC×GC/HRQTOF-MS) for the characterization of naphthenic acid fraction compounds (NAFCs) from the Alberta Oil Sands. High resolution mass spectrometry (HRMS) significantly increased the coverage of NAFCs in the mixture and allowed the differentiation of NAFCs from several chemical classes. It was demonstrated that GC×GC, in combination with the high mass accuracy and precision of the HRQTOF-MS, could distinguish chemical species with the C vs SH mass split at a much lower resolving power than required with direct infusion experiments.

View Article and Find Full Text PDF

Background: Bioenergy with carbon capture and storage (BECCS) has come to be seen as one of the most viable technologies to provide the negative carbon dioxide emissions needed to constrain global temperatures. In practice, algal biotechnology is the only form of BECCS that could be realized at scale without compromising food production. Current axenic algae cultivation systems lack robustness, are expensive and generally have marginal energy returns.

View Article and Find Full Text PDF
Article Synopsis
  • SLiMEs (subsurface lithoautotrophic microbial ecosystems) thrive under oligotrophic conditions, primarily supported by energetic processes from sulfate reducers rather than the expected methanogens.
  • Recent studies in South Africa's Witwatersrand Basin revealed that methane production from methanogens is minimal (<5% of DNA), challenging previous assumptions about their role in these ecosystems.
  • The active community is dominated by sulfur-oxidizing β-proteobacterial genera, which engage in previously unrecognized metabolism allowing diverse reactions to flourish despite harsh subsurface conditions.
View Article and Find Full Text PDF

Composite tailings (CT), an engineered, alkaline, saline mixture of oil sands tailings (FFT), processed sand and gypsum (CaSO4; 1 kg CaSO4 per m(3) FFT) are used as a dry reclamation strategy in the Alberta Oil Sands Region (AOSR). It is estimated that 9.6 × 10(8) m(3) of CT are either in, or awaiting emplacement in surface pits within the AOSR, highlighting their potential global importance in sulfur cycling.

View Article and Find Full Text PDF

Rationale: Naphthenic acids (NAs) accumulate in oil sands process-affected water (OSPW) as a result of the water-based extraction processes, and represent one of the toxic fractions in OSPW. They exist as a complex mixture and so the development of an analytical method to characterize and quantify individual acids has been an on-going challenge. The multidimensional separation technique of two-dimensional gas chromatography (GC × GC) has the potential to provide a fingerprint of the sources of NAs and can potentially resolve individual analytes for target analysis.

View Article and Find Full Text PDF

The Deepwater Horizon oil spill led to the severe contamination of coastal environments in the Gulf of Mexico. A previous study detailed coastal saltmarsh erosion and recovery in a number of oil-impacted and nonimpacted reference sites in Barataria Bay, Louisiana over the first 18 months after the spill. Concentrations of alkanes and polyaromatic hydrocarbons (PAHs) at oil-impacted sites significantly decreased over this time period.

View Article and Find Full Text PDF

Natural abundance (14)C analysis was applied to PLFAs collected from an industrial site in southern Ontario in order to assess microbial carbon sources and potential PAH biodegradation in soils. Δ(14)C of microbial phospholipid fatty acids (PLFA) at the site ranged from +54‰ to -697‰. Comparison of these values to surrounding carbon sources found that microbial carbon sources were derived primarily from vegetation and/or natural organic matter present in the soils rather than PAHs.

View Article and Find Full Text PDF

Isotopic analysis of cellular biomass has greatly improved our understanding of carbon cycling in the environment. Compound specific radiocarbon analysis (CSRA) of cellular biomass is being increasingly applied in a number of fields. However, it is often difficult to collect sufficient cellular biomass for analysis from oligotrophic waters because easy-to-use filtering methods that are free of carbon contaminants do not exist.

View Article and Find Full Text PDF

Molecular characterization of the microbial populations of soils and sediments contaminated with polycyclic aromatic hydrocarbons (PAHs) is often a first step in assessing intrinsic biodegradation potential. However, soils are problematic for molecular analysis owing to the presence of organic matter, such as humic acids. Furthermore, the presence of contaminants, such as PAHs, can cause further challenges to DNA extraction, quantification, and amplification.

View Article and Find Full Text PDF

The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites' asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite.

View Article and Find Full Text PDF

Carbon sources utilized by the active microbial communities in shallow groundwater systems underlying three petroleum service stations were characterized using natural abundance radiocarbon ((14)C). Total organic carbon (TOC) Delta(14)C values ranged from -314 to -972 per thousand and petroleum-extracted residues (EXT-RES) ranged from -293 to -971 per thousand. Phospholipid fatty acids (PLFAs)-biomarkers for active microbial populations-ranged from -405 to -885 per thousand and a comparison of these values with potential carbon sources pointed to significant microbial assimilation of (14)C-free fossil carbon.

View Article and Find Full Text PDF

Hydrogen peroxide (H(2)O(2))-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes.

View Article and Find Full Text PDF