Publications by authors named "Greg R Guerin"

Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium.

View Article and Find Full Text PDF

Here we provide the 'Global Spectrum of Plant Form and Function Dataset', containing species mean values for six vascular plant traits. Together, these traits -plant height, stem specific density, leaf area, leaf mass per area, leaf nitrogen content per dry mass, and diaspore (seed or spore) mass - define the primary axes of variation in plant form and function. The dataset is based on ca.

View Article and Find Full Text PDF

Numerous studies have analysed the relationship between C4 plant cover and climate. However, few have examined how different C4 taxa vary in their response to climate, or how environmental factors alter C4:C3 abundance. Here we investigate (a) how proportional C4 plant cover and richness (relative to C3) responds to changes in climate and local environmental factors, and (b) if this response is consistent among families.

View Article and Find Full Text PDF

In an era of unprecedented ecological upheaval, monitoring ecosystem change at large spatial scales and over long-time frames is an essential endeavor of effective environmental management and conservation. However, economic limitations often preclude revisiting entire monitoring networks at high frequency. We aimed here to develop a prioritization strategy for monitoring networks to select a subset of existing sites that meets the principles of complementarity and representativeness of the whole ecological reality, and maximizes ecological complementarity (species accumulation) and the spatial and environmental representativeness.

View Article and Find Full Text PDF

Ecological theory is built on trade-offs, where trait differences among species evolved as adaptations to different environments. Trade-offs are often assumed to be bidirectional, where opposite ends of a gradient in trait values confer advantages in different environments. However, unidirectional benefits could be widespread if extreme trait values confer advantages at one end of an environmental gradient, whereas a wide range of trait values are equally beneficial at the other end.

View Article and Find Full Text PDF

The photosynthetic pathway of plants is a fundamental trait that influences terrestrial environments from the local to global level. The distribution of different photosynthetic pathways in Australia is expected to undergo a substantial shift due to climate change and rising atmospheric CO; however, tracking change is hindered by a lack of data on the pathways of species, as well as their distribution and relative cover within plant communities. Here we present the photosynthetic pathways for 2428 species recorded across 541 plots surveyed by Australia's Terrestrial Ecosystem Research Network (TERN) between 2011 and 2017.

View Article and Find Full Text PDF

Ecosystem monitoring is fundamental to our understanding of how ecosystem change is impacting our natural resources and is vital for developing evidence-based policy and management. However, the different types of ecosystem monitoring, along with their recommended applications, are often poorly understood and contentious. Varying definitions and strict adherence to a specific monitoring type can inhibit effective ecosystem monitoring, leading to poor program development, implementation and outcomes.

View Article and Find Full Text PDF

Aim: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF
Article Synopsis
  • Plant functional traits influence ecosystem functions and vary based on ecological strategies, with species-level trade-offs not directly aligning at the community level.
  • A global analysis of over 1.1 million vegetation plots reveals that while 17 functional traits are filtered, community trait values can differ significantly despite similar environmental conditions.
  • The study suggests that local factors like disturbance and biotic interactions play a larger role in shaping trait combinations than broader macro-environmental drivers.
View Article and Find Full Text PDF

We describe and correlate environmental, floristic and structural vegetation traits of a large portion of Australian rangelands. We analysed 351 one hectare vegetation plots surveyed by Australia's Terrestrial Ecosystem Research Network (TERN) using the AusPlots Rangelands standardized method. The AusPlots Rangelands method involves surveying 1010 one meter-spaced point-intercepts (IPs) per plot.

View Article and Find Full Text PDF

Transects that traverse substantial climate gradients are important tools for climate change research and allow questions on the extent to which phenotypic variation associates with climate, the link between climate and species distributions, and variation in sensitivity to climate change among biomes to be addressed. However, the potential limitations of individual transect studies have recently been highlighted. Here, we argue that replicating and networking transects, along with the introduction of experimental treatments, addresses these concerns.

View Article and Find Full Text PDF

Weeds are commonly considered a threat to biodiversity, yet interactions between native and exotic species in grasslands are poorly understood and reported results vary depending on the spatial scale of study, the factors controlled for and the response variables analysed. We tested whether weed presence and abundance is related to declines in biodiversity in Australian grasslands. We employed existing field data from 241 plots along a disturbance gradient and correlated species richness, cover and Shannon diversity for natives and exotics, controlling for seasonal rainfall, climatic gradients and nutrient status.

View Article and Find Full Text PDF

Australian rangelands ecosystems cover 81% of the continent but are understudied and continental-scale research has been limited in part by a lack of precise data that are standardised between jurisdictions. We present a new dataset from AusPlots Rangelands that enables integrative rangelands analysis due to its geographic scope and standardised methodology. The method provides data on vegetation and soils, enabling comparison of a suite of metrics including fractional vegetation cover, basal area, and species richness, diversity, and composition.

View Article and Find Full Text PDF

We aimed to identify regional centres of plant biodiversity in South Australia, a sub-continental land area of 983,482 km2, by mapping a suite of metrics. Broad-brush conservation issues associated with the centres were mapped, specifically climate sensitivity, exposure to habitat fragmentation, introduced species and altered fire regimes. We compiled 727,417 plant species records from plot-based field surveys and herbarium records and mapped the following: species richness (all species; South Australian endemics; conservation-dependent species; introduced species); georeferenced weighted endemism, phylogenetic diversity, georeferenced phylogenetic endemism; and measures of beta diversity at local and state-wide scales.

View Article and Find Full Text PDF

Practical and useful vegetation monitoring methods are needed, and data compatibility and validation of remotely sensed data are desirable. Methods have not been adequately tested for heathy woodlands. We tested the feasibility of detecting species composition shifts in remnant woodland in South Australia, comparing historical (1986) plot data with temporal replicates (2010).

View Article and Find Full Text PDF

Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session52cf77hvvdvtkc2ju7rfdckp6i3vonlm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once