We have previously shown that IsdB, a conserved protein expressed by Staphylococcus aureus, induces a robust antibody response which correlates with protection in a murine challenge model. Here we investigate the role of cellular immunity in IsdB mediated protection using lymphocyte deficient SCID mice. As opposed to WT CB-17 mice the CB-17 SCID mice were not protected against a lethal challenge of S.
View Article and Find Full Text PDFIndwelling central venous catheters are a common and important source of nosocomial Staphylococcus epidermidis and S. aureus infections, causing increased morbidity and mortality during hospitalization. A model was developed to reflect the clinical situation of catheter colonization by transient hematogeneously spread staphylococci, in order to investigate potential vaccine candidates.
View Article and Find Full Text PDFA fully human monoclonal antibody (CS-D7, IgG1) specific for the iron regulated surface determinant B (IsdB) of Staphylococcus aureus was isolated from the Cambridge Antibody Technology (CAT) scFv antibody library. As compared to previously described IsdB specific murine monoclonals, CS-D7 has a unique, non-overlapping binding site on IsdB, and exhibits increased in vivo activity. The antibody recognizes a conformational epitope spanning amino acids 50 to 285 and has a binding affinity of 340 (± 75) pM for IsdB.
View Article and Find Full Text PDFIn an effort to characterize important epitopes of Staphylococcus aureus iron-regulated surface determinant B (IsdB), murine IsdB-specific monoclonal antibodies (MAbs) were isolated and characterized. A panel of 12 MAbs was isolated. All 12 MAbs recognized IsdB in enzyme-linked immunosorbent assays and Western blots; 10 recognized native IsdB expressed by S.
View Article and Find Full Text PDFStaphylococcus aureus is a clinically important capsule-forming bacterium. The capsule polysaccharide (CPs) occurs as different chemical structures depending on the serotype of the organism, but one form, capsular polysaccharide type 8 (CPs8) found in clinical isolates, is largely unstudied. The potential of CPs8 as a vaccine target was evaluated using two approaches.
View Article and Find Full Text PDF