Publications by authors named "Greg Mann"

Background: The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells.

View Article and Find Full Text PDF

The ability of transglutaminase (bTG) to functionalize BSA has been investigated using peptide mapping experiments. Interestingly, the conjugation was not detected on a glutamine but on an asparagine residue. A sequence determination study was further performed, and a sequence of 10 amino acids for site-specific conjugation was identified.

View Article and Find Full Text PDF

Photoenzymatic intermolecular hydroalkylations of olefins are highly enantioselective for chiral centers formed during radical termination but poorly selective for centers set in the C-C bond-forming event. Here, we report the evolution of a flavin-dependent "ene"-reductase to catalyze the coupling of α,α-dichloroamides with alkenes to afford α-chloroamides in good yield with excellent chemo- and stereoselectivity. These products can serve as linchpins in the synthesis of pharmaceutically valuable motifs.

View Article and Find Full Text PDF

Enzymes have the potential to catalyse complex chemical reactions with unprecedented selectivity, under mild conditions in aqueous media. Accordingly, there is serious interest from the pharmaceutical industry to utilize enzymes as biocatalysts to produce medicines in an environmentally sustainable and economic manner. Prominent advances in the field of biotechnology have transformed this potential into a reality.

View Article and Find Full Text PDF

With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products.

View Article and Find Full Text PDF

There is a growing interest in the use of cyclic peptides as therapeutics, but their efficient production is often the bottleneck in taking them forward in the development pipeline. We have recently developed a method to synthesise azole-containing cyclic peptides using enzymes derived from different cyanobactin biosynthetic pathways. Accurate quantification is crucial for calculation of the reaction yield and for the downstream biological testing of the products.

View Article and Find Full Text PDF

Determination of protein crystal structures requires that the phases are derived independently of the observed measurement of diffraction intensities. Many techniques have been developed to obtain phases, including heavy-atom substitution, molecular replacement and substitution during protein expression of the amino acid methionine with selenomethionine. Although the use of selenium-containing methionine has transformed the experimental determination of phases it is not always possible, either because the variant protein cannot be produced or does not crystallize.

View Article and Find Full Text PDF

The bottromycins are a family of highly modified peptide natural products, which display potent antimicrobial activity against Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. Bottromycins have recently been shown to be ribosomally synthesized and post-translationally modified peptides (RiPPs). Unique amongst RiPPs, the precursor peptide BotA contains a C-terminal "follower" sequence, rather than the canonical N-terminal "leader" sequence.

View Article and Find Full Text PDF

Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine-tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger-scale syntheses and better control over derivatisation.

View Article and Find Full Text PDF
Article Synopsis
  • Regioselective modifications of amino acids in peptides play a key role in various biosynthetic pathways and have therapeutic potential.
  • The enzyme LynD catalyzes the conversion of cysteine residues to thiazolines in peptides, requiring a conserved N-terminal leader for maximal activity while showing little sensitivity to surrounding residues.
  • Structural studies show that the substrate binds to one part of LynD, but catalysis occurs in a separate area, illustrating a unique strategy that balances specificity and versatility, which is also seen in other similar enzymes.
View Article and Find Full Text PDF

Patellamides are members of the cyanobactin family of ribosomally synthesized and post-translationally modified cyclic peptide natural products, many of which, including some patellamides, are biologically active. A detailed mechanistic understanding of the biosynthetic pathway would enable the construction of a biotechnological `toolkit' to make novel analogues of patellamides that are not found in nature. All but two of the protein domains involved in patellamide biosynthesis have been characterized.

View Article and Find Full Text PDF

The biosynthetic pathways for patellamide and related natural products have recently been studied by structural biology. These pathways produce molecules that have a complex framework and exhibit a diverse array of activity due to the variability of the amino acids that are found in them. As these molecules are difficult to synthesize chemically, exploitation of their properties has been modest.

View Article and Find Full Text PDF

Heterocycle-containing cyclic peptides are promising scaffolds for the pharmaceutical industry but their chemical synthesis is very challenging. A new universal method has been devised to prepare these compounds by using a set of engineered marine-derived enzymes and substrates obtained from a family of ribosomally produced and post-translationally modified peptides called the cyanobactins. The substrate precursor peptide is engineered to have a non-native protease cleavage site that can be rapidly cleaved.

View Article and Find Full Text PDF

The fluorinase is an enzyme that catalyses the combination of S-adenosyl-L-methionine (SAM) and a fluoride ion to generate 5'-fluorodeoxy adenosine (FDA) and L-methionine through a nucleophilic substitution reaction with a fluoride ion as the nucleophile. It is the only native fluorination enzyme that has been characterised. The fluorinase was isolated in 2002 from Streptomyces cattleya, and, to date, this has been the only source of the fluorinase enzyme.

View Article and Find Full Text PDF

Purpose: An implantable metal-oxide semiconductor field effect transistors-based dosimeter has recently been developed for the in vivo monitoring of hypofractionated radiotherapy. This DVS-HFT dosimeter is designed for fraction sizes of 340-950 cGy and can also be used for bis in die fraction monitoring. The current work reports on the testing and evaluation of this dosimeter, including both its basic characteristics as well as its performance during simulated clinical treatment plans.

View Article and Find Full Text PDF

Purpose: In vivo range verification in proton therapy is highly desirable. A recent study suggested that it was feasible to use point dose measurement for in vivo beam range verification in proton therapy, provided that the spread-out Bragg peak dose distribution is delivered in a different and rather unconventional manner. In this work, the authors investigate the possibility of using a commercial implantable dosimeter with wireless reading for this particular application.

View Article and Find Full Text PDF