In multiple myeloma (MM) disease, malignant plasma cells produce excessive quantities of a monoclonal immunoglobulin (Ig), known as M-protein. M-protein levels are measured in the serum of patients with MM using electrophoresis techniques to determine the response to treatment. However, therapeutic monoclonal antibodies, such as isatuximab, may confound signals using electrophoresis assays.
View Article and Find Full Text PDFObjective: Systemic lupus erythematosus (SLE) is a debilitating autoimmune disease affecting multiple organs in the body, but therapeutic options are still very limited and often come with adverse effects. Increasing evidence has underlined an important role of the Toll-like receptor 7 (TLR-7)/TLR-9/interleukin-1 receptor-associated kinase 1 (IRAK-1)/interferon regulatory factor 7 (IRF-7) pathway in the development and progression of SLE. Notably, the prolyl isomerase Pin1 is an essential regulator of IRAK-1 in TLR-7/TLR-9 signaling, but its role in SLE is unknown.
View Article and Find Full Text PDFBackground: The Fibroblast Growth Factor (FGF) pathway is driving various aspects of cellular responses in both normal and malignant cells. One interesting characteristic of this pathway is the biphasic nature of the cellular response to some FGF ligands like FGF2. Specifically, it has been shown that phenotypic behaviors controlled by FGF signaling, like migration and growth, reach maximal levels in response to intermediate concentrations, while high levels of FGF2 elicit weak responses.
View Article and Find Full Text PDFFbw7 is the substrate recognition component of the Skp1-Cullin-F-box (SCF)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers; however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1.
View Article and Find Full Text PDFEstrogen receptor alpha (ERα), a key driver of growth in the majority of breast cancers, contains an unstructured transactivation domain (AF1) in its N terminus that is a convergence point for growth factor and hormonal activation. This domain is controlled by phosphorylation, but how phosphorylation impacts AF1 structure and function is unclear. We found that serine 118 (S118) phosphorylation of the ERα AF1 region in response to estrogen (agonist), tamoxifen (antagonist), and growth factors results in recruitment of the peptidyl prolyl cis/trans isomerase Pin1.
View Article and Find Full Text PDFToll-like receptors (TLRs) shape innate and adaptive immunity to microorganisms. The enzyme IRAK1 transduces signals from TLRs, but mechanisms for its activation and regulation remain unknown. We found here that TLR7 and TLR9 activated the isomerase Pin1, which then bound to IRAK1; this resulted in activation of IRAK1 and facilitated its release from the receptor complex to activate the transcription factor IRF7 and induce type I interferons.
View Article and Find Full Text PDFTelomeres are essential for maintaining cellular proliferative capacity and their loss has been implicated in ageing. A key regulator in telomere maintenance is the telomeric protein TRF1, which was also identified as Pin2 in a screen for Pin1. Pin1 is a unique prolyl isomerase that regulates protein conformation and function after phosphorylation.
View Article and Find Full Text PDFIn January 2007 a project team was commissioned by the Department of Health to develop specialist guidance for advance decisions to refuse treatment (ADRT). ADRT is one component of the Mental Capacity Act (MCA) 2005, which provides a statutory mechanism protecting the advance decision-making process for people, particularly those who have a long-term condition and those approaching end-of-life care. The ADRT project team is hosted by the Mid-Trent Cancer Network and works in close association with Care Services Improvement Partnership East Midland.
View Article and Find Full Text PDFCurr Cancer Drug Targets
May 2008
Proline directed phosphorylation is a key regulatory mechanism controlling the function of fundamental proteins involved in cell proliferation and oncogenic transformation. Recently, the identification of the phosphorylation dependent prolyl isomerase Pin1 has uncovered a distinct regulatory mechanism controlling protein function. Specifically, Pin1 controls the conversion of peptidyl proline bond conversion from cis to trans, only when the preceding serine or threonine is phosphorylated.
View Article and Find Full Text PDFTau pathology is a hallmark of many neurodegenerative diseases including Alzheimer disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). Genetic tau mutations can cause FTDP-17, and mice overexpressing tau mutants such as P301L tau are used as AD models. However, since no tau mutations are found in AD, it remains unclear how appropriate tau mutant mice are as an AD model.
View Article and Find Full Text PDFProline is unique in the realm of amino acids in its ability to adopt completely distinct cis and trans conformations, which allows it to act as a backbone switch that is controlled by prolyl cis-trans isomerization. This intrinsically slow interconversion can be catalyzed by the evolutionarily conserved group of peptidyl prolyl cis-trans isomerase enzymes. These enzymes include cyclophilins and FK506-binding proteins, which are well known for their isomerization-independent role as cellular targets for immunosuppressive drugs.
View Article and Find Full Text PDFRecognition of double-stranded RNA activates interferon-regulatory factor 3 (IRF3)-dependent expression of antiviral factors. Although the molecular mechanisms underlying the activation of IRF3 have been studied, the mechanisms by which IRF3 activity is reduced have not. Here we report that activation of IRF3 is negatively regulated by the peptidyl-prolyl isomerase Pin1.
View Article and Find Full Text PDFPhosphorylation of proteins on serine or threonine residues that immediately precede proline (pSer/Thr-Pro) is a central signaling mechanism in cell proliferation and transformation. Recent studies indicate that certain pSer/Thr-Pro motifs in native proteins exist in two completely distinct conformations, cis and trans, whose conversion is markedly slowed down upon phosphorylation, but specifically catalyzed by the peptidyl-prolyl cis/trans isomerase Pin1. Importantly, such Pin1-catalyzed conformational changes can have profound effects on the function of many phosphorylation signaling pathways, thereby playing an important role in various cellular processes.
View Article and Find Full Text PDFBruton tyrosine kinase (Btk) is expressed in B-lymphocytes. Mutations in Btk cause X-linked agammaglobulinemia in humans. However, the mechanism of activation and signaling of this enzyme has not been fully investigated.
View Article and Find Full Text PDFNeuropathological hallmarks of Alzheimer's disease are neurofibrillary tangles composed of tau and neuritic plaques comprising amyloid-beta peptides (Abeta) derived from amyloid precursor protein (APP), but their exact relationship remains elusive. Phosphorylation of tau and APP on certain serine or threonine residues preceding proline affects tangle formation and Abeta production in vitro. Phosphorylated Ser/Thr-Pro motifs in peptides can exist in cis or trans conformations, the conversion of which is catalysed by the Pin1 prolyl isomerase.
View Article and Find Full Text PDFMyc family transcription factors are destabilized by phosphorylation of a conserved amino-terminal GSK-3beta motif. In proliferating cerebellar granule neuron precursors (CGNPs), Sonic hedgehog signaling induces N-myc expression, and N-myc protein is stabilized by insulin-like growth factor-mediated suppression of GSK-3beta. N-myc phosphorylation-mediated degradation is a prerequisite for CGNP growth arrest and differentiation.
View Article and Find Full Text PDFThe prolyl isomerase Pin1 is a conserved enzyme that is intimately involved in diverse biological processes and pathological conditions such as cancer and Alzheimer's disease. By catalysing cis-trans interconversion of certain motifs containing phosphorylated serine or threonine residues followed by a proline residue (pSer/Thr-Pro), Pin1 can have profound effects on phosphorylation signalling. The structural and functional differences that result from cis-trans isomerization of specific pSer/Thr-Pro motifs probably underlie most, if not all, Pin1-dependent actions.
View Article and Find Full Text PDF