This paper presents a lens-free imaging approach utilizing an array of light sources, capable of measuring the dielectric properties of many particles simultaneously. This method employs coplanar electrodes to induce velocity changes in flowing particles through dielectrophoretic forces, allowing the inference of individual particle properties from differential velocity changes. Both positive and negative forces are detectable.
View Article and Find Full Text PDFIn this paper, we present a microfluidic flow cytometer for simultaneous imaging and dielectric characterization of individual biological cells within a flow. Utilizing a combination of dielectrophoresis (DEP) and high-speed imaging, this system offers a dual-modality approach to analyze both cell morphology and dielectric properties, enhancing the ability to analyze, characterize, and discriminate cells in a heterogeneous population. A high-speed camera is used to capture images of and track multiple cells in real-time as they flow through a microfluidic channel.
View Article and Find Full Text PDFThis paper presents a wireless chipless resonator-based sensor for measuring the absolute value of an external time-varying electric field. The sensor is developed using contactless air-filled substrate-integrated waveguide (CLAF-SIW) technology. The sensor employs a low-impedance electromagnetic band gap structure to confine the electric field within the sensor's air cavity.
View Article and Find Full Text PDFThe dielectric properties of cells are directly related to their morphological and physiological properties and can be used to monitor their status when exposed to stress conditions. In this work, dual-frequency dielectrophoresis (DEP) cytometry was employed to measure changes in the membrane capacitance and cytoplasm conductivity of single Chinese hamster ovary (CHO) cells during the progression of starvation-induced apoptosis. Our dual-frequency DEP cytometer enables simultaneous measurement of multiple dielectric properties of single cells and identification of their state (viable or apoptotic) within a heterogeneous sample.
View Article and Find Full Text PDFNutrient depletion in fed-batch cultures and at the end of batch cultures is among the main causes of stress on cells and a trigger of apoptosis. In this study, we investigated changes in the cytoplasm conductivity of Chinese hamster ovary (CHO) cells under controlled starvation. Employing a single-cell dielectrophoresis (DEP) cytometer, we measured the DEP response of CHO cells incubated in a medium without glucose and glutamine over a 48-h period.
View Article and Find Full Text PDFA hydrogel-pH-electrode based near-field passive volatile sensor is described for real-time monitoring of fish spoilage. The sensor employs a varactor-based LC resonator that can be interrogated remotely using inductive coupling. The sensor's resonant frequency varies in response to the basic volatile spoilage compounds (total volatile basic nitrogen, TVB-N) in the headspace of packaged fish.
View Article and Find Full Text PDFThe instrument described here is an all-electronic dielectrophoresis (DEP) cytometer sensitive to changes in polarizability of single cells. The important novel feature of this work is the differential electrode array that allows independent detection and actuation of single cells within a short section ([Formula: see text]) of the microfluidic channel. DEP actuation modifies the altitude of the cells flowing between two altitude detection sites in proportion to cell polarizability; changes in altitude smaller than 0.
View Article and Find Full Text PDFTo ensure maximum productivity of recombinant proteins it is desirable to prolong cell viability during a mammalian cell bioprocess, and therefore important to carefully monitor cell density and viability. In this study, five different and independent methods of monitoring were applied to Chinese hamster ovary (CHO) cells grown in a batch culture in a controlled bioreactor to determine cell density and/or cell viability. They included: a particle counter, trypan blue exclusion (Cedex), an in situ bulk capacitance probe, an off-line fluorescent flow cytometer, and a prototype dielectrophoretic (DEP) cytometer.
View Article and Find Full Text PDFDielectric particles flowing through a microfluidic channel over a set of coplanar electrodes can be simultaneously capacitively detected and dielectrophoretically (DEP) actuated when the high (1.45 GHz) and low (100 kHz-20 MHz) frequency electromagnetic fields are concurrently applied through the same set of electrodes. Assuming a simple model in which the only forces acting upon the particles are apparent gravity, hydrodynamic lift, DEP force, and fluid drag, actuated particle trajectories can be obtained as numerical solutions of the equations of motion.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2011
When particles in liquid suspensions flow through channels and pipes in a laminar fashion, the resulting parabolic velocity profile gives rise to shear, which induces the particles to rotate. If flowing suspensions containing dielectric particles are immersed in an external electric field, the anisotropic polarization induced in rotating nonspherical particles will vary with the orientation of the particle with respect to the external field; what results is an uncertainty in experimental measurements that involve particle polarization. The present study establishes the limits of this uncertainty and shows that departure from spherical symmetry in individual particles can lead to a significant overlap in measurements attempting to discriminate between particle subpopulations in suspensions.
View Article and Find Full Text PDFIn biomedical applications ranging from the study of pathogen invasion to drug efficacy assays, there is a growing need to develop minimally invasive techniques for single-cell analysis. This has inspired researchers to develop optical, electrical, microelectromechanical and microfluidic devices for exploring phenomena at the single-cell level. In this work, we demonstrate an electrical approach for single-cell analysis wherein a 1.
View Article and Find Full Text PDF