IEEE Comput Graph Appl
January 2021
High-resolution simulation of global climate physics enables us to model how the climate may change under a variety of future scenarios. Such simulations produce vast amounts of information and dense datasets. If interrogated in tandem, these datasets can provide holistic, vital information on Earth's many integrated systems by revealing the manifold interrelated properties of the atmosphere, ocean, and polar ice, framed by real-world terrain in three-dimensional space as they vary over time.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
December 2014
We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run.
View Article and Find Full Text PDF