Publications by authors named "Greer Kirshenbaum"

Adult neurogenesis is reduced during aging and impaired in disorders of stress, memory, and cognition though its normal function remains unclear. Moreover, a systems level understanding of how a small number of young hippocampal neurons could dramatically influence brain function is lacking. We examined whether adult neurogenesis sustains hippocampal connections cumulatively across the life span.

View Article and Find Full Text PDF

Adult neurogenesis is reduced during aging and impaired in disorders of stress, memory, and cognition though its normal function remains unclear. Moreover, a systems level understanding of how a small number of young hippocampal neurons could dramatically influence brain function is lacking. We examined whether adult neurogenesis sustains hippocampal connections cumulatively across the life span.

View Article and Find Full Text PDF

Environmental exposures during early life, but not during adolescence or adulthood, lead to persistent reductions in neurogenesis in the adult hippocampal dentate gyrus (DG). The mechanisms by which early life exposures lead to long-term deficits in neurogenesis remain unclear. Here, we investigated whether targeted ablation of dividing neural stem cells during early life is sufficient to produce long-term decreases in DG neurogenesis.

View Article and Find Full Text PDF

Background: Alterations in environmental light and intrinsic circadian function have strong associations with mood disorders. The neural origins underpinning these changes remain unclear, although genetic deficits in the molecular clock regularly render mice with altered mood-associated phenotypes.

Methods: A detailed circadian and light-associated behavioral characterization of the Na/K-ATPase α3 Myshkin (Myk/+) mouse model of mania was performed.

View Article and Find Full Text PDF

Social behavioral deficits have been observed in patients diagnosed with alternating hemiplegia of childhood (AHC), rapid-onset dystonia-parkinsonism and CAPOS syndrome, in which specific missense mutations in ATP1A3, encoding the Na(+), K(+)-ATPase α3 subunit, have been identified. To test the hypothesis that social behavioral deficits represent part of the phenotype of Na(+), K(+)-ATPase α3 mutations, we assessed the social behavior of the Myshkin mouse model of AHC, which has an I810N mutation identical to that found in an AHC patient with co-morbid autism. Myshkin mice displayed deficits in three tests of social behavior: nest building, pup retrieval and the three-chamber social approach test.

View Article and Find Full Text PDF

Cognitive impairment is a prominent feature in a range of different movement disorders. Children with Alternating Hemiplegia of Childhood are prone to developmental delay, with deficits in cognitive functioning becoming progressively more evident as they grow older. Heterozygous mutations of the ATP1A3 gene, encoding the Na+,K+-ATPase α3 subunit, have been identified as the primary cause of Alternating Hemiplegia.

View Article and Find Full Text PDF

Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 are the primary cause of alternating hemiplegia of childhood (AHC). Most ATP1A3 mutations in AHC lie within a cluster in or near transmembrane α-helix TM6, including I810N that is also found in the Myshkin mouse model of AHC. These mutations all substantially reduce Na(+),K(+)-ATPase α3 activity.

View Article and Find Full Text PDF

Recent evidence implicates adult hippocampal neurogenesis in regulating behavioral and physiologic responses to stress. Hippocampal neurogenesis occurs across the lifespan, however the rate of cell birth is up to 300% higher in adolescent mice compared to adults. Adolescence is a sensitive period in development where emotional circuitry and stress reactivity undergo plasticity establishing life-long set points.

View Article and Find Full Text PDF

Missense mutations in ATP1A3 encoding Na(+),K(+)-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+),K(+)-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited.

View Article and Find Full Text PDF

Bipolar disorder is a debilitating psychopathology with unknown etiology. Accumulating evidence suggests the possible involvement of Na(+),K(+)-ATPase dysfunction in the pathophysiology of bipolar disorder. Here we show that Myshkin mice carrying an inactivating mutation in the neuron-specific Na(+),K(+)-ATPase α3 subunit display a behavioral profile remarkably similar to bipolar patients in the manic state.

View Article and Find Full Text PDF
Article Synopsis
  • A mouse mutant named Myshkin (Myk) exhibits autosomal dominant complex partial seizures and shows a low threshold for hippocampal seizures, along with neuronal degeneration.
  • Researchers discovered that Myk/+ mice carry a specific mutation (I810N) in the Na(+),K(+)-ATPase alpha3 isoform, leading to a significant reduction (42%) in ATPase activity in the brain.
  • Introducing additional copies of the functional Na(+),K(+)-ATPase alpha3 via transgenesis can prevent epilepsy and restore ATPase activity, highlighting its crucial role in controlling seizure activity.
View Article and Find Full Text PDF