Publications by authors named "Greer C"

Arctic soils are increasingly susceptible to petroleum hydrocarbon contamination, as exploration and exploitation of the Arctic increase. Bioremediation in these soils is challenging due to logistical constraints and because soil temperatures only rise above 0°C for ∼2 months each year. Nitrogen is often added to contaminated soil in situ to stimulate the existing microbial community, but little is known about how the added nutrients are used by these microorganisms.

View Article and Find Full Text PDF

The abundance and structure of archaeal and bacterial communities from the active layer and the associated permafrost of a moderately acidic (pH < 5.0) High Arctic wetland (Axel Heiberg Island, Nunavut, Canada) were investigated using culture- and molecular-based methods. Aerobic viable cell counts from the active layer were ∼100-fold greater than those from the permafrost (2.

View Article and Find Full Text PDF

Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.

View Article and Find Full Text PDF

A DNA microarray (Enteroarray) was designed with probes targeting four species-specific taxonomic identifiers to discriminate among 18 different enterococcal species, while other probes were designed to identify 18 virulence factors and 174 antibiotic resistance genes. In total, 262 genes were utilized for rapid species identification of enterococcal isolates, while characterizing their virulence potential through the simultaneous identification of endogenous antibiotic resistance and virulence genes. Enterococcal isolates from broiler chicken farms were initially identified by using the API 20 Strep system, and the results were compared to those obtained with the taxonomic genes atpA, recA, pheS, and ddl represented on our microarray.

View Article and Find Full Text PDF

The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines.

View Article and Find Full Text PDF

An odorant receptor map in mammals that is constructed by the glomerular coalescence of sensory neuron axons in the olfactory bulb is essential for proper odor information processing. How this map is linked with olfactory cortex is unknown. Using a battery of methods, including various markers of cell division in combination with tracers of neuronal connections and time-lapse live imaging, we found that early- and late-generated mouse mitral cells became differentially distributed in the dorsal and ventral subdivisions of the odorant receptor map.

View Article and Find Full Text PDF

Early-onset Alzheimer's disease (EOAD), defined as affecting those under age 65, afflicts between 200,000 and 500,000 people in the US. EOAD tends to be a fast-progressing and aggressive form of AD. There is a beginning body of research exploring EOAD patients' experience and needs, as well as that of their primary family caregivers, often spouses.

View Article and Find Full Text PDF

Naphthenic acids (NAs) are a complex mixture of organic acid compounds released during the extraction of crude oil from oil sands operations. The accumulation of toxic NAs in tailings pond water (TPW) is of significant environmental concern, and phytoremediation using constructed wetlands is one remediation option being assessed. Since root-associated microorganisms are an important factor during phytoremediation of organic compounds, this study investigated the impact of NAs on the microbial communities associated with the macrophyte Typha latifolia (cattail).

View Article and Find Full Text PDF

Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al.

View Article and Find Full Text PDF

Gray leaf spot (GLS) disease of perennial ryegrass (Lolium perenne) and kikuyugrass (Pennisetum clandestinum) in golf courses in California was first noted in 2001 and 2003, respectively, and within 5 years had become well established. The causal agent of the disease is the fungus Magnaporthe grisea, which is known to consist primarily of clonal lineages that are highly host specific. Therefore, our objective was to investigate host specificity and population dynamics among isolates associated primarily from perennial ryegrass and kikuyugrass since the disease emerged at similar times in California.

View Article and Find Full Text PDF

Drosophila Little imaginal discs (Lid) is a recently described member of the JmjC domain class of histone demethylases that specifically targets trimethylated histone H3 lysine 4 (H3K4me3). To understand its biological function, we have utilized a series of Lid deletions and point mutations to assess the role that each domain plays in histone demethylation, in animal viability, and in cell growth mediated by the transcription factor dMyc. Strikingly, we find that lid mutants are rescued to adulthood by either wildtype or enzymatically inactive Lid expressed under the control of its endogenous promoter, demonstrating that Lid's demethylase activity is not essential for development.

View Article and Find Full Text PDF

The piriform cortex (PCX) is a trilaminar paleocortex that is of interest for its role in odor coding and as a model for studying general principles of cortical sensory processing. While the structure of the mature PCX has been well characterized, its development is poorly understood. Notably, the kinetics as well as the cellular and morphological basis of the postnatal events that shape the PCX remain unknown.

View Article and Find Full Text PDF

The embryonic development of the olfactory nerve includes the differentiation of cells within the olfactory placode, migration of cells into the mesenchyme from the placode, and extension of axons by the olfactory sensory neurons (OSNs). The coalition of both placode-derived migratory cells and OSN axons within the mesenchyme is collectively termed the "migratory mass." Here we address the sequence and coordination of the events that give rise to the migratory mass.

View Article and Find Full Text PDF

The third paper by Camillo Golgi on his new method was on the olfactory bulb. This paper has never been translated into English, but is of special interest both for its pioneering description of olfactory bulb cells and for containing the first illustration by Golgi of cells stained with his new method. A translation into English is provided in this paper, together with commentaries on the significant points in his descriptions.

View Article and Find Full Text PDF

Olfactory sensory neuron (OSN) axons exit the olfactory epithelium (OE) and extend toward the olfactory bulb (OB) where they coalesce into glomeruli. Each OSN expresses only 1 of approximately 1,200 odor receptors (ORs). OSNs expressing the same OR are distributed in restricted zones of the OE.

View Article and Find Full Text PDF

In an effort to develop a noninvasive method for assessment of cyanobacterial toxins in drinking water, plausible cytotoxicity/inhibition of microcystin-LR and cylindrospermopsin was evaluated by cell-substrate impedance sensing (ECIS) using three different cell lines. Sf9 insect cells were attached to concanavalin A coated gold electrodes, whereas Chinese hamster ovary (CHO) and human embryo kidney (HEK) cells were attached to a fibronectin or laminin coated gold surface. Cytotoxic or inhibitory effects were dependent upon the cell line and the extracellular matrix (ECM) coating.

View Article and Find Full Text PDF

Little is known about how normal aging affects the brain. Recent evidence suggests that neuronal loss is not ubiquitous in aging neocortex. Instead, subtle and still controversial, region- and layer-specific alterations of neuron morphology and synapses are reported during aging, leading to the notion that discrete changes in neural circuitry may underlie age-related cognitive deficits.

View Article and Find Full Text PDF

As odorant receptors (ORs) are thought to be critical determinants of olfactory sensory neuron (OSN) axon targeting and organization, we examined the spatiotemporal onset of mice ORs expression from the differentiation of OSNs in the olfactory placode to an aging olfactory epithelium. ORs were first detected in the placode at embryonic day 9 (E9), at the onset of OSN differentiation but before axon extension. By E13, 22 of 23 ORs were expressed.

View Article and Find Full Text PDF

The melting of permafrost and its potential impact on CH(4) emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH(4) emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmere Island in the Canadian high Arctic.

View Article and Find Full Text PDF
Article Synopsis
  • * A quantitative PCR (Q-PCR) method was developed to detect toxic cyanobacteria by focusing on specific genes linked to microcystin production, which helped to monitor their presence in the water during summers of 2006 and 2007.
  • * The Q-PCR approach demonstrated a clear relationship between gene copy numbers and microcystin concentrations, effectively identifying harmful blooms even when traditional detection methods failed.
View Article and Find Full Text PDF

Pharmaceutical products are released at low concentrations into aquatic environments following domestic wastewater treatment. Such low concentrations have been shown to induce transcriptional responses in microorganisms, which could have consequences on aquatic ecosystem dynamics. In order to test if these transcriptional responses could also be observed in complex river microbial communities, biofilm reactors were inoculated with water from two rivers of differing trophic statuses and subsequently treated with environmentally relevant doses (ng/liter to microg/liter range) of four pharmaceuticals (erythromycin [ER], gemfibrozil [GM], sulfamethazine [SN], and sulfamethoxazole [SL]).

View Article and Find Full Text PDF

The Gully is the first Fisheries and Oceans Canada marine protected area off the eastern coast of Canada. To ensure success of conservation efforts in this area, it is essential to develop a better understanding of microbial community composition from the euphotic zone to the deep sea in this previously unsurveyed environment. Denaturing gradient gel electrophoresis (DGGE) and nucleotide sequencing were used to characterize microbial community structure.

View Article and Find Full Text PDF

We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (∼24% salinity), subzero (-5 °C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 °C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.

View Article and Find Full Text PDF

A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice.

View Article and Find Full Text PDF

The fate of the carbon stocked in permafrost following global warming and permafrost thaw is of major concern in view of the potential for increased CH(4) and CO(2) emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but no comprehensive study has yet addressed their composition and functional potential in permafrost. Here, a 2-m deep permafrost sample and its overlying active layer soil were subjected to metagenomic sequencing, quantitative PCR (qPCR) and microarray analyses.

View Article and Find Full Text PDF