Publications by authors named "Greenland A"

Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.

View Article and Find Full Text PDF

Plant breeders have indirectly selected for variation at circadian-associated loci in many of the world's major crops, when breeding to increase yield and improve crop performance. Using an eight-parent Multiparent Advanced Generation Inter-Cross (MAGIC) population, we investigated how variation in circadian clock-associated genes contributes to the regulation of heading date in UK and European winter wheat (Triticum aestivum) varieties. We identified homoeologues of EARLY FLOWERING 3 (ELF3) as candidates for the Earliness per se (Eps) D1 and B1 loci under field conditions.

View Article and Find Full Text PDF

Background: Standard setting for clinical examinations typically uses the borderline regression method to set the pass mark. An assumption made in using this method is that there are equal intervals between global ratings (GR) (e.g.

View Article and Find Full Text PDF

Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic overexpression in both a low and a high SPS line, we provide a functional validation for the role of this gene in determining SPS also in hexaploid wheat.

View Article and Find Full Text PDF

The indica ecotypes, IR64, an elite drought-susceptible variety adapted to irrigated ecosystem, and Apo (IR55423-01 or NSIC RC9), a moderate drought-tolerant upland genotype together with their hybrid (IR64 × Apo) were exposed to non- and water-stress conditions. By sequencing (RNA-seq) these genotypes, we were able to map genes diverging in cis and/or trans factors. Under non-stress condition, cis dominantly explains (11.

View Article and Find Full Text PDF

The influence of wheat (modern wheat, both bread and pasta, their wild ancestors and synthetic hybrids) on the microbiota of their roots and surrounding soil is characterized. We isolated lines of bread wheat by hybridizing diploid () with tetraploid and crossed it with a modern cultivar of . The newly created, synthetic hybrid wheat, which recapitulate the breeding history of wheat through artificial selection, is found to support a microbiome enriched in beneficial Glomeromycetes fungi, but also in, potentially detrimental, Nematoda.

View Article and Find Full Text PDF

Our previous genetic analysis of a tetraploid wild wheat species, Aegilops peregrina, predicted that a single gene per haploid genome, Bgc-1, controls B-type starch granule content in the grain. To test whether bread wheat (Triticum aestivum L.) has orthologous Bgc-1 loci, we screened a population of γ-irradiated bread wheat cv.

View Article and Find Full Text PDF

Background: Information on the effect of stress on the allele-specific expression (ASE) profile of rice hybrids is limited. More so, the association of allelically imbalanced genes to important traits is yet to be understood. Here we assessed allelic imbalance (AI) in the heterozygote state of rice under non- and water-stress treatments and determined association of asymmetrically expressed genes with grain yield (GY) under drought stress by in-silico co-localization analysis and selective genotyping.

View Article and Find Full Text PDF

Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs.

View Article and Find Full Text PDF

Climate change affects agricultural productivity worldwide. Increased prices of food commodities are the initial indication of drastic edible yield loss, which is expected to increase further due to global warming. This situation has compelled plant scientists to develop climate change-resilient crops, which can withstand broad-spectrum stresses such as drought, heat, cold, salinity, flood, submergence and pests, thus helping to deliver increased productivity.

View Article and Find Full Text PDF

Circadian clocks regulate many aspects of plant physiology and development that contribute to essential agronomic traits. Circadian clocks contain transcriptional feedback loops that are thought to generate circadian timing. There is considerable similarity in the genes that comprise the transcriptional and translational feedback loops of the circadian clock in the plant Kingdom.

View Article and Find Full Text PDF

We show the application of association mapping and genomic selection for key breeding targets using a large panel of elite winter wheat varieties and a large volume of agronomic data. The heightening urgency to increase wheat production in line with the needs of a growing population, and in the face of climatic uncertainty, mean new approaches, including association mapping (AM) and genomic selection (GS) need to be validated and applied in wheat breeding. Key adaptive responses are the cornerstone of regional breeding.

View Article and Find Full Text PDF

MAGIC populations represent one of a new generation of crop genetic mapping resources combining high genetic recombination and diversity. We describe the creation and validation of an eight-parent MAGIC population consisting of 1091 F7 lines of winter-sown wheat (Triticum aestivum L.).

View Article and Find Full Text PDF

The effects on barley starch and grain properties of four starch synthesis mutations were studied during the introgression of the mutations from diverse backgrounds into an elite variety. The (ADPglucose transporter), (granule-bound starch synthase), (debranching enzyme isoamylase 1) and (starch synthase IIa) mutations were introgressed into NFC Tipple to give mutant and wild-type BCF families with different genomic contributions of the donor parent. Comparison of starch and grain properties between the donor parents, the BCF families and NFC Tipple allowed the effects of the mutations to be distinguished from genetic background effects.

View Article and Find Full Text PDF

Wheat yellow (stripe) rust, caused by the obligate biotrophic fungus Puccinia striiformis f. sp. tritici, is a continual threat to wheat fields worldwide.

View Article and Find Full Text PDF

Reduced height (Rht)-1 and Photoperiod (Ppd) have major effects on the adaptability of bread wheat (Triticum aestivum) to specific environments. Ppd-D1a is a photoperiod insensitive allele that reduces time to flowering. The gibberellin (GA) insensitive alleles Rht-B1b and Rht-D1b shorten plant stature and were important components of the 'green revolution'.

View Article and Find Full Text PDF

Hexaploid bread wheat evolved from a rare hybridisation, which resulted in a loss of genetic diversity in the wheat D-genome with respect to the ancestral donor, Aegilops tauschii. Novel genetic variation can be introduced into modern wheat by recreating the above hybridisation; however, the information associated with the Ae. tauschii accessions in germplasm collections is limited, making rational selection of accessions into a re-synthesis programme difficult.

View Article and Find Full Text PDF

The introduction of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties was a key component of the 'green revolution' and today these alleles are the primary sources of semi-dwarfism in wheat. The Rht-1 loci encode DELLA proteins, which are transcription factors that affect plant growth and stress tolerance. In bread wheat, Rht-D1b and Rht-B1b influence resistance to the disease Fusarium Head Blight.

View Article and Find Full Text PDF

Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes.

View Article and Find Full Text PDF

The introgression of Reduced height (Rht)-B1b and Rht-D1b into bread wheat (Triticum aestivum) varieties beginning in the 1960s led to improved lodging resistance and yield, providing a major contribution to the 'green revolution'. Although wheat Rht-1 and surrounding sequence is available, the genetic composition of this region has not been examined in a homoeologous series. To determine this, three Rht-1-containing bacterial artificial chromosome (BAC) sequences derived from the A, B, and D genomes of the bread wheat variety Chinese Spring (CS) were fully assembled and analyzed.

View Article and Find Full Text PDF

Loop-mediated isothermal DNA amplification (LAMP) is an alternative method for the amplification of DNA sequences. It has been applied primarily for the detection of specific targets. We demonstrate the novel use of LAMP to amplify SSR alleles in a set of rice varieties and show the results to be consistent with analysis performed by PCR.

View Article and Find Full Text PDF

Over the next decade, wheat grain production must increase to meet the demand of a fast growing human population. One strategy to meet this challenge is to raise wheat productivity by optimizing plant stature. The Reduced height 8 (Rht8) semi-dwarfing gene is one of the few, together with the Green Revolution genes, to reduce stature of wheat (Triticum aestivum L.

View Article and Find Full Text PDF

In an initial investigation of differential expression of genes caused by cis-acting regulatory elements in rice, the lack of reproducibility led us to question the basic premise of allelic expression imbalance determination: namely that departures of cDNA expression ratios from those observed in genomic DNA provide unequivocal evidence of cis-acting polymorphisms. This paper describes experiments designed to demonstrate that stochastic variation in low copy number of targets in PCR reactions give variable allelic ratios even when starting with the same copy numbers of the two alleles. These significant departures from an expected 1:1 ratio provide an explanation to the lack of reproducibility observed for our cDNA measurements.

View Article and Find Full Text PDF

• Studies of embryo dormancy in relation to preharvest sprouting (PHS) in cereals have focused on ABA and other hormones. The relationship between these phenomena and the rate of grain filling has not been investigated. • A collection of barley mutants impaired in starch synthesis was assessed for preharvest sprouting in the field.

View Article and Find Full Text PDF