Publications by authors named "Greening D"

Background: Elucidating mechanisms underlying atrial myopathy, which predisposes individuals to atrial fibrillation (AF), will be critical for preventing/treating AF. In a serendipitous discovery, we identified atrial enlargement, fibrosis, and thrombi in mice with reduced phosphoinositide 3-kinase (PI3K) in cardiomyocytes. PI3K(p110α) is elevated in the heart with exercise and is critical for exercise-induced ventricular enlargement and protection, but the role in the atria was unknown.

View Article and Find Full Text PDF

Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.

View Article and Find Full Text PDF

We previously reported that plasmalogens, a class of phospholipids, were decreased in a setting of dilated cardiomyopathy (DCM). Plasmalogen levels can be modulated via a dietary supplement called alkylglycerols (AG) which has demonstrated benefits in some disease settings. However, its therapeutic potential in DCM remained unknown.

View Article and Find Full Text PDF

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.

View Article and Find Full Text PDF

Disorder and flexibility in protein structures are essential for biological function but can also contribute to diseases, such as neurodegenerative disorders. However, characterizing protein folding on a proteome-wide scale within biological matrices remains challenging. Here we present a method using a bifunctional chemical probe, named TME, to capture in situ, enrich and quantify endogenous protein disorder in cells.

View Article and Find Full Text PDF

Decellularised extracellular matrix (dECM) produced by mesenchymal stromal cells (MSCs) is a promising biomaterial for improving the ex vivo expansion of MSCs. The dECMs are often deposited on high modulus surfaces such as tissue culture plastic or glass, and subsequent differentiation assays often bias towards osteogenesis. We tested the hypothesis that dECM deposited on substrates of varying modulus will produce cell culture environments that are tailored to promote the proliferation and/or lineage-specific differentiation of MSCs.

View Article and Find Full Text PDF

Gas flow is fundamental for driving tidal ventilation and, thus, the speed of lung motion, but current bias flow settings to support the preterm lung after birth do not have an evidence base. We aimed to determine the role of gas bias flow rates to generate positive pressure ventilation in initiating early lung injury pathways in the preterm lamb. Using slower speeds to inflate the lung during tidal ventilation (gas flow rates 4-6 L/min) did not affect lung mechanics, mechanical power, or gas exchange compared with those currently used in clinical practice (8-10 L/min).

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers studied two mouse models: one with pathological changes (dilated cardiomyopathy and AF) and another with physiological changes (large heart due to IGF1R), both showing increased atrial mass but differing in functionality and molecular profiles.
  • * The findings suggest that pathological atrial enlargement leads to dysfunction and heart failure markers, while physiological enlargement does not, providing insights for potential drug targets and biomarkers for AF through proteomic analysis.
View Article and Find Full Text PDF

Pathological reprogramming of cardiomyocyte and fibroblast proteome landscapes drive the initiation and progression of cardiac fibrosis. Although the secretome of dysfunctional cardiomyocytes is emerging as an important driver of pathological fibroblast reprogramming, our understanding of the downstream molecular players remains limited. Here, we show that cardiac fibroblast activation (αSMA) and oxidative stress mediated by the secretome of TGFβ-stimulated cardiomyocytes is associated with a profound reprogramming of their proteome and phosphoproteome landscape.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists started studying tiny bubbles called extracellular vesicles (EVs) that help cells send important stuff to each other.
  • Now, they think these EVs can be used as new tools to treat diseases, especially heart problems.
  • People from different fields like chemistry and physics are working together to make these EVs better and faster, with some already being tested on humans!
View Article and Find Full Text PDF

Aims: Formylpeptide receptors (FPRs) play a critical role in the regulation of inflammation, an important driver of hypertension-induced end-organ damage. We have previously reported that the biased FPR small-molecule agonist, compound17b (Cmpd17b), is cardioprotective against acute, severe inflammatory insults. Here, we reveal the first compelling evidence of the therapeutic potential of this novel FPR agonist against a longer-term, sustained inflammatory insult, i.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are cell-derived vesicles evolving as important elements involved in all stages of cancers. sEVs bear unique protein signatures that may serve as biomarkers. Pancreatic cancer (PC) records a very poor survival rate owing to its late diagnosis and several cancer cell-derived proteins have been reported as candidate biomarkers.

View Article and Find Full Text PDF

Arterial thrombosis manifesting as heart attack and stroke is the leading cause of death worldwide. Platelets are central mediators of thrombosis that can be activated through multiple activation pathways. Platelet-derived extracellular vesicles (pEVs), also known as platelet-derived microparticles, are granular mixtures of membrane structures produced by platelets in response to various activating stimuli.

View Article and Find Full Text PDF

Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique.

View Article and Find Full Text PDF

Aim: Acyl-coenzyme A dehydrogenase family member 10 (ACAD10) is a mitochondrial protein purported to be involved in the fatty acid oxidation pathway. Metformin is the most prescribed therapy for type 2 diabetes; however, its precise mechanisms of action(s) are still being uncovered. Upregulation of ACAD10 is a requirement for metformin's ability to inhibit growth in cancer cells and extend lifespan in Caenorhabditis elegans.

View Article and Find Full Text PDF

The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential.

View Article and Find Full Text PDF

Gram-negative bacteria release outer membrane vesicles (OMVs) that contain cargo derived from their parent bacteria. Helicobacter pylori is a Gram-negative human pathogen that produces urease to increase the pH of the surrounding environment to facilitate colonization of the gastric mucosa. However, the effect of acidic growth conditions on the production and composition of H.

View Article and Find Full Text PDF

The integration of robust single-pot, solid-phase-enhanced sample preparation with powerful liquid chromatography-tandem mass spectrometry (LC-MS/MS) is routinely used to define the extracellular vesicle (EV) proteome landscape and underlying biology. However, EV proteome studies are often limited by sample availability, requiring upscaling cell cultures or larger volumes of biofluids to generate sufficient materials. Here, we have refined data independent acquisition (DIA)-based MS analysis of EV proteome by optimizing both protein enzymatic digestion and chromatography gradient length (ranging from 15 to 44 min).

View Article and Find Full Text PDF

Tidal ventilation is essential in supporting the transition to air-breathing at birth, but excessive tidal volume (V) is an important factor in preterm lung injury. Few studies have assessed the impact of specific V levels on injury development. Here, we used a lamb model of preterm birth to investigate the role of different levels of V during positive pressure ventilation (PPV) in promoting aeration and initiating early lung injury pathways.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells.

View Article and Find Full Text PDF

Cell-derived extracellular vesicles (EVs) are evolutionary-conserved secretory organelles that, based on their molecular composition, are important intercellular signaling regulators. At least three classes of circulating EVs are known based on mechanism of biogenesis: exosomes (sEVs/Exos), microparticles (lEVs/MPs), and shed midbody remnants (lEVs/sMB-Rs). sEVs/Exos are of endosomal pathway origin, microparticles (lEVs/MPs) from plasma membrane blebbing and shed midbody remnants (lEVs/sMB-Rs) arise from symmetric cytokinetic abscission.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how some brain cancer cells (glioblastoma) become very invasive and resist treatment, like radiotherapy and the drug temozolomide.
  • They think tiny parts of cells called small extracellular vesicles (sEVs) can help these cancer cells communicate and grow in a harmful way.
  • The research shows that these vesicles can make the cancer cells more aggressive, especially after treatment, leading to a worse situation for patients.
View Article and Find Full Text PDF

Pluripotent stem cells are key players in regenerative medicine. Embryonic pluripotent stem cells, despite their significant advantages, are associated with limitations such as their inadequate availability and the ethical dilemmas in their isolation and clinical use. The discovery of very small embryonic-like (VSEL) stem cells addressed the aforementioned limitations, but their isolation technique remains a challenge due to their small cell size and their efficiency in isolation.

View Article and Find Full Text PDF