Atrial fibrillation is the most common disorder of cardiac rhythm. In spite of simplicity of diagnosis, patients with atrial fibrillation are difficult to treat. In the recent years with the description of the phenomenon called remodelling, it has been possible to better define the principal mechanisms responsible for initiation, maintenance and, in some instances, termination of atrial fibrillation.
View Article and Find Full Text PDFIntroduction: Cardiovascular disease remains the most common cause of death in the United States and most other Western nations. Among these deaths, sudden, out-of-hospital cardiac arrest claims approximately 1000 lives each day in the United States alone. Most of these cardiac arrests are due to ventricular fibrillation.
View Article and Find Full Text PDFAdvances in pacemaker technology in the 1980s have generated a wide variety of complex multiprogrammable pacemakers and pacing modes. The aim of the present review is to address the different rate responsive pacing modalities presently available in respect to physiological situations and pathological conditions. Rate adaptive pacing has been shown to improve exercise capacity in patients with chronotropic incompetence.
View Article and Find Full Text PDFPacing prevention algorithms have been introduced in order to maximize the benefits of atrial pacing in atrial fibrillation prevention. It has been demonstrated that algorithms actually keep overdrive atrial pacing, reduce atrial premature contractions, and prevent short-long atrial cycle phenomenon, with good patient tolerance. However, clinical studies showed inconsistent benefits on clinical endpoints such as atrial fibrillation burden.
View Article and Find Full Text PDFIntroduction: Atrial fibrillation (AF), the most common and rising disorder of cardiac rhythm, is quite difficult to control and/or to treat. Non pharmacological therapies for AF may involve the use of dedicated pacing algorithms to detect and prevent atrial arrhythmia that could be a trigger for AF onset. Selection 900E/AF2.
View Article and Find Full Text PDFPacing Clin Electrophysiol
April 2003
An innovative control parameter for rate responsive (RR) pacing that uses a sensor to measure mechanical vibrations generated by the myocardium during the isovolumetric contraction phase (peak endocardial acceleration [PEA]), has been devised by SORIN Biomedica (BEST Living System). To assess the physiological sensitivity of the pacemaker sensor along with reliability of the algorithm to supply appropriate pacing rates three different relationships were examined (linear regression analysis): (1) recorded deltaPEA exercise steps against the calculated energy cost of exercise (MET), (2) exercise pacing rates against predicted values, and (3) deltaPEA against exercise pacing rates. Fifteen patients (mean age 68 +/- 12 years) in NYHA Class I-II, implanted with the BEST Living System (Living 1 DDDR pacemaker) for advanced AVB and/or SSS, underwent one of the following maximal exercise stress protocols: bicycle (25 W, 2-minute steps) or Bruce or Chronotropic Assessment Exercise Protocol (CAEP).
View Article and Find Full Text PDF