Publications by authors named "Grebenko A"

We explore dynamic structural superlubricity for the case of a relatively large contact area, where the friction force is proportional to the area (exceeding ∼100  nm^{2}) experimentally, numerically, and theoretically. We use a setup composed of two molecular smooth incommensurate surfaces: graphene-covered tip and substrate. The experiments and molecular dynamic simulations demonstrate independence of the friction force on the normal load for a wide range of normal loads and relative surface velocities.

View Article and Find Full Text PDF

Advances in material science, bioelectronic, and implantable medicine combined with recent requests for eco-friendly materials and technologies inevitably formulate new challenges for nano- and micropatterning techniques. Overall, the importance of creating micro- and nanostructures is motivated by a large manifold of fundamental and applied properties accessible only at the nanoscale. Lithography is a crucial family of fabrication methods to create prototypes and produce devices on an industrial scale.

View Article and Find Full Text PDF

Following the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals.

View Article and Find Full Text PDF

Novel bio-materials, like chitosan and its derivatives, appeal to finding a new niche in room temperature gas sensors, demonstrating not only a chemoresistive response, but also changes in mechanical impedance due to vapor adsorption. We determined the coefficients of elasticity and viscosity of chitosan acetate films in air, ammonia, and water vapors by acoustic spectroscopy. The measurements were carried out while using a resonator with a longitudinal electric field at the different concentrations of ammonia (100-1600 ppm) and air humidity (20-60%).

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWCNTs) possess extraordinary physical and chemical properties. Thin films of randomly oriented SWCNTs have great potential in many opto-electro-mechanical applications. However, good adhesion of SWCNT films with a substrate material is pivotal for their practical use.

View Article and Find Full Text PDF

Background: Food allergy negatively impacts the quality of life (QoL) and has been associated with increased maternal anxiety. There is currently a lack of data assessing QoL of food-allergic children and adolescents in Russia. We aimed to evaluate the performance of the Food Allergy Quality of Life Questionnaire (FAQLQ) measures in a Russian sample of children, adolescents, and mothers and to investigate association between child QoL and maternal general anxiety.

View Article and Find Full Text PDF

Although carbon nanotubes have already been demonstrated to be a promising material for bolometric photodetectors, enhancing sensitivity while maintaining the speed of operation remains a great challenge. Here, we present a holey carbon nanotube network, designed to improve the temperature coefficient of resistance for highly sensitive ultra-fast broadband bolometers. Treatment of carbon nanotube films with low-frequency oxygen plasma allows fine tuning of the electronic properties of the material.

View Article and Find Full Text PDF

Employing optical spectroscopy we have performed a comparative study of the dielectric response of extracellular matrix and filaments of electrogenic bacteria Shewanella oneidensis MR-1, cytochrome c, and bovine serum albumin. Combining infrared transmission measurements on thin layers with data of the terahertz spectra, we obtain the dielectric permittivity and AC conductivity spectra of the materials in a broad frequency band from a few cm up to 7000 cm in the temperature range from 5 to 300 K. Strong absorption bands are observed in the three materials that cover the range from 10 to 300 cm and mainly determine the terahertz absorption.

View Article and Find Full Text PDF

For decades respiratory chain and photosystems were the main firing field of the studies devoted to mechanisms of electron transfer in proteins. The concept of conjugated lateral electron and transverse proton transport during cellular respiration and photosynthesis, which was formulated in the beginning of 1960-s, has been confirmed by thousands of experiments. However, charge transfer in recently discovered bacterial nanofilaments produced by various electrogenic bacteria is regarded currently outside of electron and proton conjugation concept.

View Article and Find Full Text PDF

The electrodynamics of metals is well understood within the Drude conductivity model; properties of insulators and semiconductors are governed by a gap in the electronic states. But there is a great variety of disordered materials that do not fall in these categories and still respond to external field in an amazingly uniform manner. At radiofrequencies delocalized charges yield a frequency-independent conductivity σ (ν) whose magnitude exponentially decreases while cooling.

View Article and Find Full Text PDF

Broad-band (4-20 000 cm) spectra of real and imaginary conductance of a set of high-quality pristine and AuCl-doped single-walled carbon nanotube (SWCNT) films with different transparency are systematically measured. It is shown that while the high-energy (≥1 eV) response is determined by well-known interband transitions, the lower-energy electrodynamic properties of the films are fully dominated by unbound charge carriers. Their main spectral effect is seen as the free-carrier Drude-type contribution.

View Article and Find Full Text PDF

We demonstrate the procedure of scanning probe microscopy (SPM) conductive probe fabrication with a single multi-walled carbon nanotube (MWNT) on a silicon cantilever pyramid. The nanotube bundle reliably attached to the metal-covered pyramid is formed using dielectrophoresis technique from the MWNT suspension. It is shown that the dimpled aluminum sample can be used both for shortening/modification of the nanotube bundle by applying pulse voltage between the probe and the sample and for controlling the probe shape via atomic force microscopy imaging the sample.

View Article and Find Full Text PDF

The crystal structure of the bacterial catalase from Micrococcus lysodeikticus has been refined using the gene-derived sequence both at 0.88 A resolution using data recorded at 110 K and at 1.5 A resolution with room-temperature data.

View Article and Find Full Text PDF

Background: The biosynthesis of key metabolic components is of major interest to biologists. Studies of de novo purine synthesis are aimed at obtaining a deeper understanding of this central pathway and the development of effective chemotherapeutic agents. Phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase catalyses the seventh step out of ten in the biosynthesis of purine nucleotides.

View Article and Find Full Text PDF

A heme d prosthetic group with the configuration of a cis-hydroxychlorin gamma-spirolactone has been found in the crystal structures of Penicillium vitale catalase and Escherichia coli catalase hydroperoxidase II (HPII). The absolute stereochemistry of the two heme d chiral carbon atoms has been shown to be identical. For both catalases the heme d is rotated 180 degrees about the axis defined by the alpha-gamma-meso carbon atoms, with respect to the orientation found for heme b in beef liver catalase.

View Article and Find Full Text PDF

The three-dimensional crystal structure of catalase from Micrococcus lysodeikticus has been solved by multiple isomorphous replacement and refined at 1.5 A resolution. The subunit of the tetrameric molecule of 222 symmetry consists of a single polypeptide chain of about 500 amino acid residues and one haem group.

View Article and Find Full Text PDF

The three-dimensional structure analysis of crystalline fungal catalase from Penicillium vitale has been extended to 2.0 A resolution. The crystals belong to space group P3(1)21, with the unit cell parameters of a = b = 144.

View Article and Find Full Text PDF

The crude leghaemoglobin suspension from root nodules of yellow lupine (Lupinus luteus L.) was separated into five fractions: I, IIa and IIb, IIIa and IIIb using the chromatography on DEAE-cellulose (numbered following the elution order). The visible absorption spectra show that fractions I, IIa and IIIa are met-leghaemoglobins while IIb and IIIb are oxy-forms.

View Article and Find Full Text PDF

Heating of pepsin and trypsin crystals was studied by scanning microcalorimetry. A sharp decrease in temperature, halfwidth and heat of transition with a decrease in heating rate was discovered. It was shown that thermal transition is connected only with the denaturation of protein molecules in the crystal and not accompanied by the crystal disintegration into separate molecules.

View Article and Find Full Text PDF