Quantum communication test beds provide a useful resource for experimentally investigating a variety of communication protocols. Here we demonstrate a superconducting circuit test bed with bidirectional multiphoton state transfer capability using time-domain shaped wave packets. The system we use to achieve this comprises two remote nodes, each including a tunable superconducting transmon qubit and a tunable microwave-frequency resonator, linked by a 2 m-long superconducting coplanar waveguide, which serves as a transmission line.
View Article and Find Full Text PDFLinear optical quantum computing provides a desirable approach to quantum computing, with only a short list of required computational elements. The similarity between photons and phonons points to the interesting potential for linear mechanical quantum computing using phonons in place of photons. Although single-phonon sources and detectors have been demonstrated, a phononic beam splitter element remains an outstanding requirement.
View Article and Find Full Text PDFHigh-fidelity quantum entanglement is a key resource for quantum communication and distributed quantum computing, enabling quantum state teleportation, dense coding, and quantum encryption. Any sources of decoherence in the communication channel, however, degrade entanglement fidelity, thereby increasing the error rates of entangled state protocols. Entanglement purification provides a method to alleviate these nonidealities by distilling impure states into higher-fidelity entangled states.
View Article and Find Full Text PDFThe generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons and phonons. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities.
View Article and Find Full Text PDFEffective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al.
View Article and Find Full Text PDFPhonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Individual phonons in a resonant structure can be controlled and detected by superconducting qubits, enabling the coherent generation and measurement of complex stationary phonon states. We report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits.
View Article and Find Full Text PDFOne of the hallmarks of quantum physics is the generation of non-classical quantum states and superpositions, which has been demonstrated in several quantum systems, including ions, solid-state qubits and photons. However, only indirect demonstrations of non-classical states have been achieved in mechanical systems, despite the scientific appeal and technical utility of such a capability, including in quantum sensing, computation and communication applications. This is due in part to the highly linear response of most mechanical systems, which makes quantum operations difficult, as well as their characteristically low frequencies, which hinder access to the quantum ground state.
View Article and Find Full Text PDFTo advance cost-effective strategies for removing trace organic contaminants from urban runoff, the feasibility of using manganese oxides as a geomedia amendment in engineered stormwater infiltration systems to oxidize organic contaminants was evaluated. Ten representative organic chemicals that have previously been detected in urban stormwater were evaluated for reactivity in batch experiments with birnessite. With respect to reactivity, contaminants could be classified as: highly reactive (e.
View Article and Find Full Text PDFIndirect (sensitized) photolysis by natural organic matter (NOM), mainly from terrestrial sources, can be an important mechanism for attenuation of organic contaminants in estuarine waters, but the effect of salt gradients has been poorly investigated. We studied Suwannee River NOM-sensitized photolysis of 17β-estradiol (E2) in freshwater and saline media. Indirect photolysis by 4 mg-C/L SRNOM was much faster than direct photolysis, and quenching by sorbic acid verified the importance of triplet-excited NOM chromophores.
View Article and Find Full Text PDFSorbic acid (trans,trans-hexadienoic acid) was developed as a probe for the quantification of the formation rate, overall solution scavenging rate and steady-state concentrations of triplet-excited states of organic compounds. The method was validated against literature data for the quenching rate constant of triplet benzophenone by tyrosine obtained by laser flash photolysis and by Stern-Volmer plots of phosphorescence quenching. In contrast to these methods, the probe method does not require knowledge of the optical properties of triplets to monitor their quenching.
View Article and Find Full Text PDFAdvanced oxidation processes (AOPs) generating nonselective hydroxyl radicals (HO*) provide a broad-spectrum contaminant destruction option for the decontamination of waters. Halide ions are scavengers of HO* during AOP treatment, such that treatment of saline waters would be anticipated to be ineffective. However, HO* scavenging by halides converts HO* to radical reactive halogen species (RHS) that participate in contaminant destruction but react more selectively with electron-rich organic compounds.
View Article and Find Full Text PDFTwo nitrogen-specific detection methods, nitrogen-phosphorus detection (NPD) and nitrogen chemiluminescence detection (NCD), were investigated as low cost alternatives to mass spectrometry (MS) with chemical ionization (CI) for analysis of nitrosamines in aqueous samples. NCD showed greater sensitivity to N-nitrosodimethylamine (NDMA) and seven other volatile nitrosamines than did NPD. Instrument detection levels for NDMA were established at 2.
View Article and Find Full Text PDFA method was developed for the extraction of seven N-nitrosamine compounds from water by solid-phase microextraction (SPME). The method developed requires a total analysis time of only 1.25 h for both extraction and detection (versus 3-20 h for other isolation techniques).
View Article and Find Full Text PDF