Publications by authors named "Grazyna Nowak"

Introduction: Students must rapidly learn and retain fundamental basic science knowledge in a doctor of pharmacy curriculum. Active learning stimulates engagement, reinforces concept understanding, and promotes retention of knowledge. The purpose this study was to determine if introducing game-based active recall and critical thinking microlearning activities improved student comprehension of challenging concepts, exam performance, and successful completion of a biochemistry course.

View Article and Find Full Text PDF
Article Synopsis
  • Arginase inhibition in an animal model of myocardial infarction results in increased plasma citrulline and a higher citrulline/ornithine (C/O) ratio, while decreasing plasma ornithine and the ornithine/arginine (O/A) ratio.
  • In a study of 100 myocardial infarction patients, those with thin-cap fibroatheroma (TCFA) lesions had a significantly lower C/O ratio and alterations in intima-media thickness were correlated with changes in arginine metabolites at 6 months post-MI.
  • The findings suggest that increased arginase activity, as opposed to nitric oxide synthase, may be related to the presence of TCFA in heart lesions and a thicker int
View Article and Find Full Text PDF

Ischemia-induced mitochondrial dysfunction and ATP depletion in the kidney result in disruption of primary functions and acute injury of the kidney. This study tested whether γ-tocotrienol (GTT), a member of the vitamin E family, protects mitochondrial function, reduces ATP deficits, and improves renal functions and survival after ischemia/reperfusion injury. Vehicle or GTT (200 mg/kg) were administered to mice 12 h before bilateral kidney ischemia, and endpoints were assessed at different timepoints of reperfusion.

View Article and Find Full Text PDF

Background: Ibrutinib, an inhibitor of the Bruton's kinase (BTK), is characterized by high efficacy in the therapy of patients with relapsed and refractory chronic lymphocytic leukemia (RR-CLL).

Aims: To analyze the potential significance of the mutational status of selected 30 genes on the disease outcome in 45 patients with RR-CLL using custom-made gene panel and sequencing on Illumina MiSeq FGx platform.

Results: The highest rate of mutations was observed in TP53 (n = 18; 40.

View Article and Find Full Text PDF

Voltage-dependent anion channels (VDACs) constitute major transporters mediating bidirectional movement of solutes between cytoplasm and mitochondria. We aimed to determine if VDAC1 plays a role in recovery of mitochondrial and kidney functions after ischemia-induced acute kidney injury (AKI). Kidney function decreased after ischemia and recovered in wild-type (WT), but not in VDAC1-deficient mice.

View Article and Find Full Text PDF

Previously, we have shown that active protein kinase Cα (PKCα) promotes recovery of mitochondrial function after injury in vitro [Nowak G & Bakajsova D (2012) Am J Physiol Renal Physiol 303, F515-F526]. This study examined whether PKCα regulates recovery of mitochondrial and kidney functions after ischemia-induced acute injury (AKI) in vivo. Markers of kidney injury were increased after bilateral ischemia and returned to normal levels in wild-type (WT) mice.

View Article and Find Full Text PDF

We have previously shown that protein kinase Cε (PKCε) is involved in mitochondrial dysfunction in renal proximal tubular cells (RPTC). This study examined mitochondrial targets of active PKCε in RPTC injured by the model oxidant tert-butyl hydroperoxide (TBHP). TBHP exposure augmented the levels of phosphorylated (active) PKCε in mitochondria, which suggested translocation of PKCε to mitochondria after oxidant exposure.

View Article and Find Full Text PDF

Lymph node microenvironment provides chronic lymphocytic leukaemia (CLL) cells with signals promoting their survival and granting resistance to chemotherapeutics. CLL cells overexpress PIM kinases, which regulate apoptosis, cell cycle and migration. We demonstrate that BCR crosslinking, CD40 stimulation, and coculture with stromal cells increases PIMs expression in CLL cells, indicating microenvironment-dependent PIMs regulation.

View Article and Find Full Text PDF

Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) cells harbor frequent mutations in genes responsible for epigenetic modifications. Increasing evidence of clinical role of DNMT3A and IDH1/2 mutations highlights the need for a robust and inexpensive test to identify these mutations in routine diagnostic work-up. Herein, we compared routinely used direct sequencing method with high-resolution melting (HRM) assay for screening DNMT3A and IDH1/2 mutations in patients with AML.

View Article and Find Full Text PDF

We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia.

View Article and Find Full Text PDF

Radiation therapy for the treatment of thoracic cancers may be associated with radiation-induced heart disease (RIHD), especially in long-term cancer survivors. Mechanisms by which radiation causes heart disease are largely unknown. To identify potential long-term contributions of mitochondria in the development of radiation-induced heart disease, we examined the time course of effects of irradiation on cardiac mitochondria.

View Article and Find Full Text PDF

This study determined the role of PKC-α and associated inducible heat shock protein 70 (iHSP70) in the repair of mitochondrial function in renal proximal tubular cells (RPTCs) after oxidant injury. Wild-type PKC-α (wtPKC-α) and an inactive PKC-α [dominant negative dn; PKC-α] mutant were overexpressed in primary cultures of RPTCs, and iHSP70 levels and RPTC regeneration were assessed after treatment with the oxidant tert-butylhydroperoxide (TBHP). TBHP exposure increased ROS production and induced RPTC death, which was prevented by ferrostatin and necrostatin-1 but not by cyclosporin A.

View Article and Find Full Text PDF

The protein kinase C (PKC) family of isozymes is involved in numerous physiological and pathological processes. Our recent data demonstrate that PKC regulates mitochondrial function and cellular energy status. Numerous reports demonstrated that the activation of PKC-a and PKC-ε improves mitochondrial function in the ischemic heart and mediates cardioprotection.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF)-α and interleukin (IL)-10 are cytokines involved in the balance between cell-mediated and humoral immunity. We investigated whether serum TNF-α and IL-10 levels have any impact on clinical outcome of patients with chronic lymphocytic leukemia (CLL). TNF-α and IL-10 levels were determined in the serum of 160 CLL patients at the time of diagnosis.

View Article and Find Full Text PDF

We demonstrated that nonselective PKC activation promotes mitochondrial function in renal proximal tubular cells (RPTC) following toxicant injury. However, the specific PKC isozyme mediating this effect is unknown. This study investigated the role of PKC-α in the recovery of mitochondrial functions in oxidant-injured RPTC.

View Article and Find Full Text PDF

Oxidative stress is a major mechanism of a variety of renal diseases. Tocopherols and tocotrienols are well known antioxidants. This study aimed to determine whether γ-tocotrienol (GT3) protects against mitochondrial dysfunction and renal proximal tubular cell (RPTC) injury caused by oxidants.

View Article and Find Full Text PDF

PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307-F316, 2004).

View Article and Find Full Text PDF

Retrosynthetic analysis involved in a backward search for strategic disconnections is still the most powerful strategy, recently advanced by topology-based complexity estimation, for discovering the shortest sequences of transformations and chemical synthesis planning. Therein, we propose an alternative strategy that combines backward and forward search embodied within a mathematical model of generating chemical transformations. The backward reasoning involves a new concept of the strategic bond tree for alternative multibond disconnections of a target molecule.

View Article and Find Full Text PDF

Introduction: The presence of BCR-ABL oncogene mutations in patients with chronic myeloid leukemia (CML) may be responsible for the failure of tyrosine kinase inhibitor treatment.

Objectives: The aim of the study was to evaluate the frequency of BCR-ABL gene mutations in patients with CML (the MAPTEST study) treated with imatinib (IM).

Patients And Methods: Direct sequencing analysis of BCR-ABL gene was performed in 92 patients treated with IM for more than 3 months.

View Article and Find Full Text PDF

We propose a combinatorial learning procedure for discovering graph transformation patterns based on combining transformations that can be used in a consecutive fashion. Application of this kind of pattern to a specified chemical system allows to combine a sequence of consecutive transformations into a one-step operation limiting the complexity of a reaction tree. In a retrosynthetic sense, it provides a global strategy for bond disconnections to plan more efficient convergent syntheses.

View Article and Find Full Text PDF

Previously, we showed that protein kinase B (Akt) activation increases intracellular ATP levels and decreases necrosis in renal proximal tubular cells (RPTC) injured by the nephrotoxicant S-(1, 2-dichlorovinyl)-l-cysteine (DCVC) (Shaik ZP, Fifer EK, Nowak G. Am J Physiol Renal Physiol 292: F292-F303, 2007). This study examined the role of Akt in improving mitochondrial function in DCVC-injured RPTC.

View Article and Find Full Text PDF