Publications by authors named "Grazyna Mosieniak"

Article Synopsis
  • - The study investigates the role of oxidized LDL particles (LDLox) in assessing cardiometabolic risk, focusing on their relationship with other biomarkers and risk factors using data from 1089 participants aged 40-75.
  • - Researchers performed correlation analyses and developed machine learning models to predict risks associated with high blood pressure and obesity, achieving promising validation scores that highlighted the significance of LDLox.
  • - The findings provide new insights into how LDL oxidation may interact with aging markers to influence cardiometabolic health, suggesting that further research with larger groups could enhance clinical assessment tools.
View Article and Find Full Text PDF

Cells may undergo senescence in response to DNA damage, which is associated with cell cycle arrest, altered gene expression and altered cell morphology. Protein palmitoylation is one of the mechanisms by which the DNA damage response is regulated. Therefore, we hypothesized that protein palmitoylation played a role in regulation of the senescent phenotype.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) enable communication between cells and tissues and are implicated in modulation of tumor immunosuppression. Here, we present a protocol for isolating tumor-derived EVs and assessing their functional influence in cultures with different subsets of human T cells. We describe steps for differential ultracentrifugation, size exclusion chromatography, EVs quantification, and fluorescence-activated cell sorting of human T cells.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) released from primary cell lines, originating from resected tissues during biopsies in patients with non-small cell lung cancer (NSCLC) revealing adenocarcinoma and squamous cell carcinoma subtypes, were examined for membrane proteomic fingerprints using a proximity barcoding assay. All the collected EVs expressed canonical tetraspanins (CD9, CD63, and CD81) highly coexpressed with molecules such as lysosome-associated membrane protein-1 (LAMP1-CD107a), sialomucin core protein 24 (CD164), Raph blood group (CD151), and integrins (ITGB1 and ITGA2). This representation of the protein molecules on the EV surface may provide valuable information on NSCLC subtypes and offer new diagnostic opportunities as next-generation biomarkers in personalized oncology.

View Article and Find Full Text PDF

A limited number of studies have shown functional changes in mitochondrial ion channels in aging and senescent cells. We have identified, for the first time, mitochondrial large-conductance calcium-regulated potassium channels in human smooth muscle mitochondria. This channel, with a conductance of 273 pS, was regulated by calcium ions and membrane potential.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanoparticles containing various bioactive cargos-e.g., proteins, RNAs, and lipids-that are released into the environment by all cell types.

View Article and Find Full Text PDF

Tetraspanins, including CD9, CD63, and CD81, are transmembrane biomarkers that play a crucial role in regulating cancer cell proliferation, invasion, and metastasis, as well as plasma membrane dynamics and protein trafficking. In this study, we developed simple, fast, and sensitive immunosensors to determine the concentration of extracellular vesicles (EVs) isolated from human lung cancer cells using tetraspanins as biomarkers. We employed surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation (QCM-D) as detectors.

View Article and Find Full Text PDF

Normal cells under stressful conditions such as DNA damage or excessive mitogenic signaling may undergo senescence, which is associated with cell cycle arrest and induction of a proinflammatory phenotype. Accumulation of senescent cells may contribute to the shortening of the life span by accelerating aging and promoting chronic diseases. Cytochemical detection of the senescence-associated β-galactosidase (SA-β-gal) activity with 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal) is a widely recognised marker of cell senescence.

View Article and Find Full Text PDF

Recent advances in nanomedicine have paved the way for developing targeted drug delivery systems. Nanoscale exosomes are present in almost every body fluid and represent a novel mechanism of intercellular communication. Because of their membrane origin, they easily fuse with cells, acting as a natural delivery system and maintaining the bioactivity and immunotolerance of cells.

View Article and Find Full Text PDF

Upon anticancer treatment, cancer cells can undergo cellular senescence, i.e., the temporal arrest of cell division, accompanied by polyploidization and subsequent amitotic divisions, giving rise to mitotically dividing progeny.

View Article and Find Full Text PDF

Atherosclerosis, a common age-related disease, is characterized by intense immunological activity. Atherosclerotic plaque is composed of endothelial cells, vascular smooth muscle cells (VSMCs), lipids and immune cells infiltrating from the blood. During progression of the disease, VSMCs undergo senescence within the plaque and secrete SASP (senescence-associated secretory phenotype) factors that can actively modulate plaque microenvironment.

View Article and Find Full Text PDF

Aging is associated with cognitive decline and accumulation of senescent cells in various tissues and organs. Senolytic agents such as dasatinib and quercetin (D+Q) in combination have been shown to target senescent cells and ameliorate symptoms of aging-related disorders in mouse models. However, the mechanisms by which senolytics improve cognitive impairments have not been fully elucidated particularly in species other than mice.

View Article and Find Full Text PDF

Cellular senescence is a stress response, which can be evoked in all type of somatic cells by different stimuli. Senescent cells accumulate in the body and participate in aging and aging-related diseases mainly by their secretory activity, commonly known as senescence-associated secretory phenotype-SASP. Senescence is typically described as cell cycle arrest.

View Article and Find Full Text PDF

The p21 protein, encoded by , plays a vital role in senescence, and its transcriptional control by the tumour suppressor p53 is well-established. However, p21 can also be regulated in a p53-independent manner, by mechanisms that still remain less understood. We aimed to expand the knowledge about p53-independent senescence by looking for novel players involved in regulation.

View Article and Find Full Text PDF

Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop.

View Article and Find Full Text PDF

NADPH oxidases (NOX) are commonly expressed ROS-producing enzymes that participate in the regulation of many signaling pathways, which influence cell metabolism, survival, and proliferation. Due to their high expression in several different types of cancer it was postulated that NOX promote tumor progression, growth, and survival. Thus, the inhibition of NOX activity was considered to have therapeutic potential.

View Article and Find Full Text PDF

Trimethylamine-N-oxide (TMAO) has been suggested as a marker and mediator of cardiovascular diseases. However, data are contradictory, and the mechanisms are obscure. Strikingly, the role of the TMAO precursor trimethylamine (TMA) has not drawn attention in cardiovascular studies even though toxic effects of TMA were proposed several decades ago.

View Article and Find Full Text PDF

It has been suggested that trimethylamine oxide (TMAO), a liver oxygenation product of gut bacteria-produced trimethylamine (TMA), is a marker of cardiovascular risk. However, mechanisms of the increase and biological effects of TMAO are obscure. Furthermore, the potential role of TMAO precursor, that is TMA, has not been investigated.

View Article and Find Full Text PDF

Senotherapy is an antiageing strategy. It refers to selective killing of senescent cells by senolytic agents, strengthening the activity of immune cells that eliminate senescent cells or alleviating the secretory phenotype (SASP) of senescent cells. As senescent cells accumulate with age and are considered to be at the root of age-related disorders, senotherapy seems to be very promising in improving healthspan.

View Article and Find Full Text PDF

Curcumin, a phytochemical present in the spice named turmeric, and one of the promising anti-aging factors, is itself able to induce cellular senescence. We have recently shown that cells building the vasculature senesced as a result of curcumin treatment. Curcumin-induced senescence was DNA damage-independent; however, activation of ATM was observed.

View Article and Find Full Text PDF

It is believed that postponing ageing is more effective and less expensive than the treatment of particular age-related diseases. Compounds which could delay symptoms of ageing, especially natural products present in a daily diet, are intensively studied. One of them is curcumin.

View Article and Find Full Text PDF

Cell senescence is a process that occurs due to telomere erosion or can be induced by various stresses. Senescent cells cease to divide but remain alive, metabolically active and able to secrete many molecules. They also show many hallmarks of senescence, such as enlarged size, increased granularity, increased activity of SA-β-galactosidase, increased level of cyclin-dependent kinase inhibitors, p16 and p21, and DNA damage foci.

View Article and Find Full Text PDF

Senescence of cancer cells is an important outcome of treatment of many cancer types. Cell senescence is a permanent cell cycle arrest induced by stress conditions, including DNA damage. DNA damage activates DNA damage response (DDR), which involves members of the phosphatidylinositol 3-kinase-related kinase (PIKK) superfamily: protein kinases ATM, ATR, and DNA-PKcs.

View Article and Find Full Text PDF

Cellular senescence is a fundamental trait of many eukaryotic organisms. Senescent cells participate both in the developmental program and in normal ageing and age-related diseases. Senescence of proliferation-prone cells is a state of permanent cell cycle arrest accompanied by metabolic activity manifested by high secretion levels of numerous factors, including pro-inflammatory ones.

View Article and Find Full Text PDF

Senescence is a stress response characterized by an irreversible growth arrest and alterations in certain cell functions. It is believed that both double-strand DNA breaks (DSB) and increased ROS level are the main culprit of senescence. Excessive ROS production is also particularly important in the development of a number of cardiovascular disorders.

View Article and Find Full Text PDF