Plasma membrane (PM) H-ATPase, which generates the proton gradient across the outer membrane of plant cells, plays a fundamental role in the regulation of many physiological processes fundamental for growth and development of plants. It is involved in the uptake of nutrients from external solutions, their loading into phloem and long-distance transport, stomata aperture and gas exchange, pH homeostasis in cytosol, cell wall loosening, and cell expansion. The crucial role of the enzyme in resistance of plants to abiotic and biotic stress factors has also been well documented.
View Article and Find Full Text PDFIn this study the role of the plasma membrane (PM) H(+) -ATPase for growth and development of roots as response to nitrogen starvation is studied. It is known that root development differs dependent on the availability of different mineral nutrients. It includes processes such as initiation of lateral root primordia, root elongation and increase of the root biomass.
View Article and Find Full Text PDFStudies in the last few years have shed light on the process of nitrate accumulation within plant cells, achieving molecular identification and partial characterization of the genes and proteins involved in this process. However, contrary to the plasma membrane-localized nitrate transport activities, the kinetics of active nitrate influx into the vacuole and its adaptation to external nitrate availability remain poorly understood. In this work, we have investigated the activity and regulation of the tonoplast-localized H(+)/NO₃(-) antiport in cucumber roots in response to N starvation and NO₃(-) induction.
View Article and Find Full Text PDFThe effect of salt stress (50mM NaCl) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.
View Article and Find Full Text PDFP-type ATPases are a superfamily of membrane proteins involved in many physiological processes that are fundamental for all living organisms. Using ATP, they can transport a variety of ions and other substances across all types of cell membranes against a concentration electrochemical gradient. P-type ATPases form a phosphorylated intermediate and are sensitive to vanadate.
View Article and Find Full Text PDFThe strategies developed by plants to avoid the toxicity of cadmium (Cd) and other heavy metals involve active sequestration of metals into the apoplast and vacuoles. The protein systems excluding heavy metals from the cell cytosol localize to the plasma membrane and tonoplast and are energized either by ATP or by the electrochemical gradient generated by H(+)-ATPase or by V-ATPase and pyrophosphatase (PPase), respectively. In this work, a comparative study on the contribution of both the plasma membrane and tonoplast in the active detoxification of plant cells after treatment with Cd was performed.
View Article and Find Full Text PDFThe effect of low temperature (LT, 10°C) on modification of plasma membrane (PM) H(+)-ATPase (EC 3.6.3.
View Article and Find Full Text PDFIn short-term experiments, the effect of high salinity on cucumber (Cucumis sativus) nitrate reductase activity was studied. The 60-min exposure of cucumber roots to 200 mM NaCl resulted in significant increase of the actual NR activity (measured in the presence of Mg²+), whereas the total enzyme activity (measured with EDTA) was not affected. NaCl-induced stimulation of the actual NR activity was rapidly reversed upon transfer of roots to salt-free solution.
View Article and Find Full Text PDFCadmium (Cd) and copper (Cu) effects on the two tonoplast proton pumps were compared in cucumber roots. Different alterations of vacuolar H+ transporting ATPase (V-ATPase) (EC 3.6.
View Article and Find Full Text PDFPolyamine content (PAs) often changes in response to abiotic stresses. It was shown that the accumulation of PAs decreased in roots treated for 24h with 200 mM NaCl. The role of polyamines (putrescine - PUT, spermidine - SPD and spermine - SPM) in the modification of the plasma membrane(PM) H(+)-ATPase (EC 3.
View Article and Find Full Text PDFThe effect of heavy metals on the modification of plasma membrane H(+)-ATPase (EC 3.6.3.
View Article and Find Full Text PDFIt has been recently well documented that metal transport systems play a crucial role in the uptake, distribution and detoxification of heavy metals throughout the plant. A range of gene families that are likely to be involved in essential and non-essential metal transport has been now identified and their plasma membrane and/or tonoplast localization in plant cells has been recently confirmed. These include the primary metal transporters, using ATP as the source of energy and H(+)-coupling transporters, utilizing the electrochemical gradient previously generated by plasma membrane and tonoplast proton pumps.
View Article and Find Full Text PDFJ Plant Physiol
November 2008
The time-dependent effect of 50mM NaCl on the activities of two tonoplast proton pumps was investigated in Cucumis sativus L. var. Krak root cells.
View Article and Find Full Text PDFThe effects of 10 microM cadmium, copper and nickel on the activities of vacuolar membrane and plasma membrane (PM) ATP-dependent proton pumps was investigated in Cucumis sativus L. root cells. It was demonstrated that vacuolar H+-ATPase (EC 3.
View Article and Find Full Text PDFThe role of ABA in the modification of membrane proton pump activity in cucumber roots which had been stressed for 24h with 200 mmol/dm(3) NaCl was investigated. It was shown that treatment of plants with salt distinctly increased the activity of the plasma membrane H(+)-ATPase (EC 3.6.
View Article and Find Full Text PDFThe effect of NaCl on the plasma membrane and tonoplast ATPases measured as the hydrolytic and H(+)-pumping activity was studied. Treatment of cucumber seedlings with salt increased the membrane-bound ATPases of the plasma membrane as well as the tonoplast. In both types of membranes the stimulation of ATP-hydrolysis was much higher than the stimulation of H(+)-transport suggesting that the salt- treatment of plants partially uncoupled the membrane proton pumps.
View Article and Find Full Text PDFNitrate transport across the tonoplast has been studied using vacuole membranes isolated from cucumber roots grown in nitrate. The addition of NO3- ions into the tonoplast with ATP-generated transmembrane proton gradient caused the dissipation of delta pH, indicating the NO3(-)-induced proton efflux from vesicles. NO3(-)-dependent H+ efflux was almost insensitive to the transmembrane electrical potential difference, suggesting the presence of an electroneutral NO3-/H+ antiporter in the tonoplast.
View Article and Find Full Text PDF