The human fungal pathogen Candida albicans can grow at temperatures of up to 45°C. Here, we show that at 42°C substantially less biomass was formed than at 37°C. The cells also became more sensitive to wall-perturbing compounds, and the wall chitin levels increased, changes that are indicative of wall stress.
View Article and Find Full Text PDFThe mucosal layers colonized by the pathogenic fungus Candida albicans differ widely in ambient pH. Because the properties and functions of wall proteins are probably pH dependent, we hypothesized that C. albicans adapts its wall proteome to the external pH.
View Article and Find Full Text PDFThe cell wall of Candida albicans consists of an internal skeletal layer and an external protein coat. This coat has a mosaic-like nature, containing c. 20 different protein species covalently linked to the skeletal layer.
View Article and Find Full Text PDFProteins that are covalently linked to the skeletal polysaccharides of the cell wall of Candida albicans play a major role in the colonization of the vaginal mucosal surface, which may result in vaginitis. Here we report on the variability of the cell-wall proteome of C. albicans as a function of the ambient O(2) concentration and iron availability.
View Article and Find Full Text PDFThe cell wall of Schizosaccharomyces pombe is bilayered, consisting of an inner layer of mainly polysaccharides and an outer layer of galactomannoproteins. We present a detailed analysis of the cell wall proteome. Six covalently-bound cell wall proteins (CWPs) were identified using tandem mass spectrometry, including four predicted GPI-dependent CWPs (Gas1p, Gas5p, Ecm33p and Pwp1p) and two alkali-sensitive CWPs (Psu1p and Asl1p).
View Article and Find Full Text PDF