Publications by authors named "Grazyna Gryglewicz"

A ternary polyaniline/FeO-SnO/reduced graphene oxide (PFSG) nanocomposite was prepared using a simple two-step hydrothermal treatment. The composite was applied as a glassy carbon electrode modifier (GCE) to enhance dopamine (DA) and uric acid (UA) detection. The ternary PFSG composite was compared with its binary precursor FeO-SnO/reduced graphene oxide (FSG).

View Article and Find Full Text PDF

This review presents a summary of the manufacturing of activated carbons (ACs) as electrode materials for electric double layer capacitors. Commonly used techniques of open and closed porosity determination (gas adsorption, immersion calorimetry, X-ray and neutrons scattering) were briefly described. AC production methods (laboratory and industrial) were detailed presented with the stress on advantages and drawbacks of each ones in the field of electrode materials of supercapacitor.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) were homogeneously electrodeposited on nitrogen-doped reduced graphene oxide (N-rGO) to modify a glassy carbon electrode (GCE/N-rGO-Au) in order to improve the simultaneous detection of dopamine (DA), ascorbic acid (AA), and uric acid (UA). N-rGO was prepared by the hydrothermal treatment of graphene oxide (GO) and urea at 180 °C for 12 h. AuNPs were subsequently electrodeposited onto the surface of GCE/N-rGO using 1 mM HAuCl solution.

View Article and Find Full Text PDF

Herein, we propose hydrothermal treatment as a facile and environmentally friendly approach for the synthesis of polypyrrole/reduced graphene oxide hybrids. A series of self-assembled hybrid materials with different component mass ratios of conductive polymer to graphene oxide was prepared. The morphology, porous structure, chemical composition and electrochemical performance of the synthesized hybrids as electrode materials for supercapacitors were investigated.

View Article and Find Full Text PDF

In this paper, the influences of the graphite precursor and the oxidation method on the resulting reduced graphene oxide (especially its composition and morphology) are shown. Three types of graphite were used to prepare samples for analysis, and each of the precursors was oxidized by two different methods (all samples were reduced by the same method of thermal reduction). Each obtained graphite oxide and reduced graphene oxide was analysed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS).

View Article and Find Full Text PDF

The production of activated carbons (ACs) from rapeseed cake and raspberry seed cake using slow pyrolysis followed by physical activation of the obtained solid residues is the topic of this study. The effect of activation temperature (850, 900 and 950 °C), activation time (30, 60, 90 and 120 min) and agent (steam and CO₂) on the textural characteristics of the ACs is investigated by N₂ adsorption. In general, higher activation temperatures and longer activation times increase the BET specific surface area and the porosity of the ACs, regardless of the activation agent or raw material.

View Article and Find Full Text PDF

Acoustic analysis and sound patterns recognition techniques have been widely used in many branches of science, however; almost none focused on the characterization of granular activated carbon. A new methodology has been developed in order to characterize activated carbon based on the dynamic analysis in audible spectra of the sound's relative amplitude power produced by water flooded on granular activated carbon. A home-build recording set-up and management of acoustic measurements have been presented and correlated with the results of porous structure of carbons characterized by N2 adsorption.

View Article and Find Full Text PDF

The role of pore size distribution in the adsorption of phenol in aqueous solutions on polyethylene terephthalate (PET)-based activated carbons (ACs) has been analyzed. The ACs were prepared from PET and mixtures of PET with coal-tar pitch (CTP) by means of carbonization and subsequent steam and carbon dioxide activation at 850 and 950 °C, respectively. The resultant ACs were characterized on the basis of similarities in their surface chemical features and differences in their micropore size distributions.

View Article and Find Full Text PDF

Enhanced SO2 adsorption of activated carbon fibers is obtained by tailoring a specific micro-mesoporous structure in the fibers. This architecture is obtained via metal catalytic activation of the fibers with a novel precursor, cobalt naphthenate, which contrary to other precursors, also enhances spinnability and carbon fiber yield. In the SO2 oxidation, it is demonstrated that the combination of micropores and large mesopores is the main factor for an enhanced catalytic activity which is superior to that observed in other similar microporous activated carbon fibers.

View Article and Find Full Text PDF

A hybrid electrode material for high-power supercapacitors was fabricated by grafting carbon nanofibers (CNFs) onto the surface of powdered activated carbon (AC) through catalytic chemical vapor deposition (CCVD). A uniform thin layer of disentangled CNFs with a herringbone structure was deposited on the carbon surface through the decomposition of propane at 450 °C over an AC-supported nickel catalyst. CNF coating was controlled by the reaction time and the nickel content.

View Article and Find Full Text PDF

Catalytic hydrodechlorination (HDC) is an efficient method for the elimination of chlorinated compounds from organic wastes. HDC allows for the recovery of parent hydrocarbons. Herein, we studied the dechlorination of chlorododecane (CDD), dichlorocyclohexane (DCH) and dichlorodiphenyltrichloroethane (DDT) over a sulfided Ni-Mo/C catalyst in a flow reactor.

View Article and Find Full Text PDF

Oak and birch were used as precursors to produce the activated carbons (ACs) with well-developed mesoporosity by phosphoric acid-promoted activation in a steam atmosphere. The effect of experimental variables such as the amount of activating agent, the soaking time and the type of wood on the development of porous structure upon heating at 480 degrees C was investigated. The materials were characterized by N2 adsorption at 77K, mercury porosimetry and elemental analysis.

View Article and Find Full Text PDF

The adsorption by a coal-based mesoporous activated carbon of humic acids (HAs) isolated from two Polish lignites was studied. For comparison, a commercial Aldrich humic acid was also included into this study. The differences in chemical structure and functional groups of HAs were determined by elemental analysis and infrared spectroscopy DRIFT.

View Article and Find Full Text PDF