Publications by authors named "Grazielle Rossi"

In this manuscript, we report the photo-inactivation evaluation of new tetra-cationic porphyrins with peripheral Pt(II) complexes ate meta N-pyridyl positions in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains (RGM). Four different metalloderivatives were synthetized and applied. aPDT experiments in the strains of Mycobacteroides abscessus subsp.

View Article and Find Full Text PDF

We report the photoinactivation evaluation of Ag(II) porphyrins (cationic AgTMeP and anionic AgTPPS) in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains. The aPDT assays in the Mycolicibacterium fortuitum, Mycobacteroides abscessus subs. abscessus, Mycobacteroides abscessus subsp.

View Article and Find Full Text PDF

aqueous extract was obtained by macerating wildflowers. The phytochemical profile present in the aqueous extract was elucidated by HPLC-ESI-MS/MS. Toxicity was evaluated by comet assay in peripheral blood mononuclear cells (PBMCs) and using as a model.

View Article and Find Full Text PDF

Rapidly growing mycobacteria (RGM) are found in non-sterile water and often associated with severe post-surgical infections and affect immunocompromised patients. In addition, RGM can prevent the host's immune response and have the ability to adhere to and form biofilms on biological and synthetic substrates, making pharmacological treatment difficult because conventional antimicrobials are ineffective against biofilms. Thus, there is an urgent need for new antimicrobial compounds that can overcome these problems.

View Article and Find Full Text PDF

This study investigated the chemical constituents of essential oil and is the first to relate cytogenotoxicity with oxidative metabolism and antimicrobial activity. Chromatographic analysis of the essential oil showed methyl salicylate (99.96%) and linalool (0.

View Article and Find Full Text PDF

Rapidly growing mycobacteria (RGM) are pathogens that belong to the mycobacteriaceae family and responsible for causing mycobacterioses, which are infections of opportunistic nature and with increasing incidence rates in the world population. This work evaluated the use of six water-soluble cationic porphyrins as photosensitizers for the antimicrobial photodynamic therapy (aPDT) of four RGM strains: Mycolicibacterium fortuitum, Mycolicibacterium smeagmatis, Mycobacteroides abscessus subs. Abscessus, and Mycobacteroides abscessus subsp.

View Article and Find Full Text PDF

In this manuscript, we report, for the first time, the photoinactivation evaluation of tetra-cationic porphyrins with peripheral Pt (II)-bpy complexes in the photodynamic inactivation (PDI) of rapidly growing mycobacterial strains (RGM). Two different isomeric Pt (II)-porphyrins were synthetized and applied. PDI experiments in the strains of Mycobacteroides abscessus subsp.

View Article and Find Full Text PDF

(Weinm) DC. essential oil was obtained by hydrodistillation of wild flowers from southern Brazil. We explored, for the first time, the phytochemical composition, toxicity, resistance to oxidative stress in , and antimycobacterial activities of essential oil.

View Article and Find Full Text PDF

This manuscript reports, at the first time, the photoinactivation evaluation of tetra-cationic and anionic porphyrins as photosensitizers (PS) for the photodynamic inactivation (PDI) of rapidly growing mycobacteria strains. Two different charged porphyrin groups were obtained commercially. PDI experiments in the strains Mycobacterium massiliense e Mycobacterium fortuitum conducted with adequate concentration (without aggregation) of photosensitizer under white light at a fluence rate of 50 mW/cm over 90 min showed that the most effective PS caused a 100 times reduction in the concentration of viable mycobacteria.

View Article and Find Full Text PDF

Biofilms are considered important sources of infections on biomedical surfaces, and most infections involving biofilm formation are associated with medical device implants. Therefore, there is an urgent need for new antimicrobial compounds that can combat microbial resistance associated with biofilm formation. In this context, this work aimed to evaluate the antibiofilm action of sulfamethoxazole complexed with Au, Cd, Cu, Ni and Hg on rapidly growing mycobacteria (RGM), as well as to evaluate their safety through cytotoxic assays.

View Article and Find Full Text PDF

The drug-resistant strains of Staphylococcus aureus have been considered as one of the serious health threats, which are related to high patient hospitalization rates. Besides, Staphylococcus aureus biofilm formation exhibits a drug-tolerant nature and shows nonspecific resistance against a broad-spectrum of antibiotics. The emergence of drug-resistant bacteria stimulated the development of novel medicines as a strategy to control infections.

View Article and Find Full Text PDF

Rapidly growing mycobacteria (RGM) are opportunistic microorganisms that can cause both local and disseminated infections. When in biofilm, these pathogens become highly resistant to antimicrobials used in clinical practice. Composed abundantly of polymeric substances, biofilms delay the diffusion of antimicrobials, preventing the drug from penetrating the deeper layers and having an effective action.

View Article and Find Full Text PDF

Bacterial biofilms are involved in various medical infections and for this reason it is of great importance understanding adhesion mechanisms of involved microorganisms is essential to develop new strategies of prevention and control. Different approaches have been used for preventing biofilm related infections in health care settings, such as use of surface coatings agents in medical implants. In this context, is necessary to explore new compounds with anti-biofilm activity.

View Article and Find Full Text PDF

Carbapenems are considered last-line agents for the treatment of serious infections caused by Klebsiella pneumoniae, and this microorganism may exhibit resistance to β-lactam antibiotics due to different mechanisms of resistance. We evaluated 27 isolates of K. pneumoniae resistant to carbapenems recovered from inpatients at the University Hospital of Santa Maria-RS from July 2013 to August 2014.

View Article and Find Full Text PDF

This study evaluates, for the first time, the antibiofilm, antimicrobial and antiparasitic potential of crude extract and fractions of stems of Equisetum hyemale against several infectious agents (bacteria, fungi, Mycobacterium and Trypanosomes) by broth microdilution technique and investigates the phenolic composition of the plant by high performance liquid chromatography. The crude extract and fractions showed antimicrobial activity, as they were capable of inhibiting the growth of bacteria in minimal inhibitory concentrations (MICs) ranging from 52.4 mg/mL to 3.

View Article and Find Full Text PDF

Mycobacteriosis is a type of infection caused by rapidly growing mycobacteria (RGM), which can vary from localized illness, such as skin disease, to disseminated disease. Amikacin, cefoxitin, ciprofloxacin, clarithromycin, doxycycline, imipenem and sulfamethoxazole are antimicrobial drugs chosen to treat such illnesses; however, not all patients obtain the cure. The reason why the treatment does not work for those patients is related to the fact that some clinical strains present resistance to the existing antimicrobial drugs; thereby, the research of new therapeutic approaches is extremely relevant.

View Article and Find Full Text PDF

Rapidly growing mycobacteria (RGM) are opportunistic pathogens found in the environment. When in biofilms, mycobacteria is highly resistant to antibacterial treatments. The purpose of this study is to evaluate the antibiofilm activity of antimicrobials commonly used in therapy against mycobacteria.

View Article and Find Full Text PDF

The A22 is a chemical compound that acts as a reversible inhibitor of a bacterial cell wall protein MreB leading the rods to the coccoid form. Thus, by changing the bacterial form, many properties can be affected, as the acquisition of nutrients, cell division, the clamping surfaces, motility and pathogenesis. Infections caused by strains of Pseudomonas aeruginosa have great clinical importance because these microorganisms can include more than one resistance mechanism acting together, limiting treatment options.

View Article and Find Full Text PDF