Publications by authors named "Graziella L Turdean"

Electrospun mats of PLA and PLA/Hap nanofibers produced by electrospinning were loaded with doxycycline (Doxy) through physical adsorption from a solution with initial concentrations of 3 g/L, 7 g/L, and 12 g/L, respectively. The morphological characterization of the produced material was performed using scanning electron microscopy (SEM). The release profiles of Doxy were studied in situ using the differential pulse voltammetry (DPV) electrochemical method on a glassy carbon electrode (GCE) and validated through UV-VIS spectrophotometric measurements.

View Article and Find Full Text PDF

The present study aimed to prepare nanofibers by electrospinning in the system polylactic acid-hydroxyapatite-doxycycline (PLA-HAP-Doxy) to be used as a drug delivery vehicle. Two different routes were employed for the preparation of Doxy-containing nanofibers: Immobilization on the electrospun mat's surface and encapsulation in the fiber structure. The nanofibers obtained by Doxy encapsulation were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG) and differential thermal analyses (DTA) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

A simple and sensitive method of data treatment by second-order derivative square wave voltammetry (SD-SWV) was developed for the determination of vanillin at a platinum electrode. It was shown that the irreversible oxidation reaction is controlled by the adsorption and occurs following a mechanism involving two electrons, similar to other phenolic derivatives. The experimental parameters of SWV which exert influence on vanillin determination, such as frequency, pulse amplitude, or step potential, were optimized.

View Article and Find Full Text PDF

Four different samples of ordered mesoporous silica powders (MCM-41 and SBA-15) and amino-functionalized mesoporous silica (MCM-41-NH and SBA-15-NH) were used to prepare modified glassy carbon electrodes coated with ion-exchange polymer Nafion to be used for the electrochemical detection of Cd(II). The mesoporous silica samples were characterized through transmission electron microscopy, small-angle X-ray scattering, and N-adsorption/desorption isotherms. The electrodes were characterized by using square wave anodic stripping voltammetry.

View Article and Find Full Text PDF

A new carbon paste electrode (CPE) incorporating Ru - nanoparticles (RuNP) stabilized on graphite powder was developed for H(2)O(2) amperometric detection. Cyclic voltammetric measurements, performed in phosphate buffer solutions at different potential scan rates and different potential ranges were carried out in order to evaluate the electrochemical behavior of the CPE-RuNP modified electrodes. From amperometric measurements performed at -0.

View Article and Find Full Text PDF

A new modified electrode was realized in a simple way, consisting by the immobilization of a myoglobin (My) - single walled carbon nanotubes (SWCNT) mixture on the surface of a graphite electrode with a Nafion film. The cyclic voltammetry investigations realized with the obtained electrode (G/My-SWCNT/Nafion) showed a voltammetric signal due to a one-step redox reaction of the surface-confined myoglobin, in a deaerated 0.1 M phosphate buffer, pH 7.

View Article and Find Full Text PDF

An acetylcholinesterase (AChE) based amperometric bioelectrode for a selective detection of low concentrations of organophosphorus pesticides has been developed. The amperometric needle type bioelectrode consists of a bare cavity in a PTFE isolated Pt-Ir wire, where the AChE was entrapped into a photopolymerised polymer of polyvinyl alcohol bearing styrylpyridinium groups (PVA-SbQ). Cyclic voltammetry, performed at Pt and AChE/Pt disk electrodes, confirmed the irreversible, monoelectronic thiocholine oxidation process and showed that a working potential of +0.

View Article and Find Full Text PDF