Melanoma is the most aggressive and deadly type of skin cancer. Despite the advent of targeted therapies directed against specific oncogene mutations, melanoma remains a tumor that is very difficult to treat, and ultimately remains incurable. In the past two decades, stabilization of the non-canonical nucleic acid G-quadruplex structures within oncogene promoters has stood out as a promising approach to interfere with oncogenic signaling pathways in cancer cells, paving the way toward the development of G-quadruplex ligands as antitumor drugs.
View Article and Find Full Text PDFStabilization of the G-quadruplexes (G4s) within the androgen receptor (AR) gene promoter to block transcription may represent an innovative approach to interfere with aberrant AR signaling in castration resistant prostate cancer (CRPC). A library of differently functionalized naphthalene diimides (NDIs) was screened for their ability to stabilize AR G4s: the core-extended NDI (7) stood out as the most promising ligand. AR-positive cells were remarkably sensitive to 7 in comparison to AR-negative CRCP or normal prostate epithelial cells; 7 induced remarkable impairment of AR mRNA and protein amounts and significant perturbations in the expression levels of KLK3 and of genes involved in the activation of AR program via feedback mechanisms.
View Article and Find Full Text PDFBackground: Understanding the molecular/cellular underpinnings of diffuse malignant peritoneal mesothelioma (DMPM), a fatal malignancy with limited therapeutic options, is of utmost importance for the fruitful management of the disease. In this context, we previously found that telomerase activity (TA), which accounts for the limitless proliferative potential of cancer cells, is prognostic for disease relapse and cancer-related death in DMPM patients. Consequently, the identification of factors involved in telomerase activation/regulation may pave the way towards the development of novel therapeutic interventions for the disease.
View Article and Find Full Text PDFIntroduction: The association between congenital pulmonary airway malformations (CPAM) and malignancy is reported in the literature. Interactions between the tumor, immune, and mesenchymal stromal/stem cells (MSCs) have been recognized as crucial for understanding tumorigenesis. We characterized MSCs isolated from CPAM lesions in order to define potential malignancy risks.
View Article and Find Full Text PDFThe machinery that maintains cellular and tissue homeostasis in a healthy individual is recruited and hijacked by cancer cells to support tumor growth and progression. Activation of often unpredictable alternative or complementary signaling pathways allows cancer cells to bypass the intrinsic self-destructive machinery and the limited replicative potential present in every cell for correct homeostasis maintenance. Therefore, evasion/resistance to apoptosis/cell death, self-sufficiency in growth/survival signals, and limitless replicative potential remain undoubted hallmarks of cancer, contributing to drug resistance.
View Article and Find Full Text PDFDNA has represented the most exploited target for the development of anticancer agents. It is now established that DNA may assume a variety of non-B conformations. This evidence has generated a total novel wave of interest in DNA as a cancer-associated target, since its distinct non-B structures may be regarded as sites for selective therapeutic intervention.
View Article and Find Full Text PDFA small library of hydrosoluble naphthalene diimides (NDIs) was designed and synthesized, as cell permeable pH "turned-on" fluorescent sensors, for cellular applications. The NDIs exhibit a non-emitting twisted intramolecular charge transfer (TICT) state, which has been described by a DFT computational investigation. These NDIs do not emit as a free base, but they become strong emitters when protonated.
View Article and Find Full Text PDFNaphthalene diimide (NDI) derivatives have shown high affinity for telomeric guanine (G)‑quadruplexes and good antiproliferative activity in different human tumor experimental models. A trisubstituted compound (H‑NDI‑NMe2) has been reported to stabilize the telomeric G‑quadruplex and to cause telomere dysfunction and downregulation of telomerase expression. We further investigated its mechanism of action by analyzing the capability of the molecule to interfere with the expression levels of oncogenes, such as MYC, telome-rase reverse transcriptase (TERT), KIT and BCL2, known to bear G‑quadruplex‑forming sequences within their promoters, in human tumor cell lines of different histological origin.
View Article and Find Full Text PDFThe activation of telomere maintenance mechanisms, which rely on telomerase reactivation or on a recombination-based process known as alternative lengthening of telomeres, guarantees a limitless proliferative potential to human tumor cells. To date, the molecular underpinnings that drive the activation of telomere maintenance mechanisms during tumorigenesis are poorly understood, but there are indications that complex signaling networks might be involved. Since telomerase activity has been mainly detected in tumors of epithelial origin and the alternative lengthening of telomere mechanisms is more frequently expressed in mesenchymal and neuroepithelial cancers, it could be hypothesized that cell-type specific mechanisms can favor their activation during tumor development.
View Article and Find Full Text PDFG-quadruplexes are secondary structures that may form within guanine-rich nucleic acid sequences. Telomeres have received much attention in this regard since they can fold into several distinct intramolecular G-quadruplexes, leading to the rational design and development of G-quadruplex‑stabilizing molecules. These ligands were shown to selectively exert an antiproliferative and chemosensitizing activity in in vitro and in vivo tumor models, without appreciably affecting normal cells.
View Article and Find Full Text PDFVertebrate-like T2AG3 telomeres in tlc1-h yeast consist of short double-stranded regions and long single-stranded overhang (G-tails) and, although based on Tbf1-capping activity, they are capping deficient. Consistent with this idea, we observe Y' amplification because of homologous recombination, even in the presence of an active telomerase. In these cells, Y' amplification occurs by different pathways: in Tel1(+) tlc1h cells, it is Rad51-dependent, whereas in the absence of Tel1, it depends on Rad50.
View Article and Find Full Text PDFG-quadruplex ligands have attracted considerable interest as novel anticancer therapeutics due to their capability to interfere with guanosine-rich DNA/RNA sequences, such as telomeres. Elucidation of the structures of telomeric G-quadruplexes has led, in the past few years, to the rational development of effective G-quadruplex-stabilizing small molecules. In the present study, we showed that short-term exposure of melanoma cells to Ant1,5--an anthracene-based ligand able to stabilize telomeric G-quadruplexes--impaired cell growth without inducing cell senescence or apoptosis.
View Article and Find Full Text PDFThis study investigated the prevalence and the prognostic relevance of the 2 known telomere maintenance mechanisms (TMMs), telomerase activity (TA) and alternative lengthening of telomeres (ALT), in malignant peripheral nerve sheath tumors (MPNST). In 57 specimens from 49 patients with MPNST (35 sporadic, 14 neurofibromatosis type 1-related), TA was determined using the telomeric repeat amplification protocol, and ALT was detected by assaying ALT-associated promyelocytic leukemia bodies (APB) and terminal restriction fragment (TRF) length distribution. TA or ALT (defined on the basis of APB) alone was found in 24.
View Article and Find Full Text PDFIntroduction: The limitless replicative potential of cancer cells relies on telomere integrity (which is guaranteed by a complex interaction between several specialized proteins and telomeric DNA) and the activation of specific mechanisms for telomere length maintenance. Two mechanisms are currently known in human cancer, namely telomerase activity and the alternative lengthening of telomere pathway.
Expert Opinion: In this review, we summarize the available data concerning the therapeutic strategies proposed thus far and the current challenges posed for the development of innovative telomere-based therapeutic approaches with broad-spectrum anticancer activity and for their translation into the clinical setting.
After extended proliferation, cells enter a state of replicative quiescence that is probably due to progressive telomere shortening. It is supposed that changes in telomere structure eventually expose the chromosome ends to undesired recombination events and thus promote cell senescence. The telomeric 3'-overhang is crucial for efficient chromosome capping, but its specific role in telomere shortening and in triggering the senescence program is uncertain.
View Article and Find Full Text PDFThe effects of arsenate (As) and atrazine (Atr) on myeloid progenitors (colony-forming unit-granulocyte/macrophage, CFU-GM) cells derived from bone marrow were studied in male and female mice after combined in utero and juvenile exposure. Female adult mice were treated with arsenate in drinking water during gestation. Then, separate groups of males and females' offspring were exposed for 4 months to atrazine, to additional arsenate or to co-exposure of atrazine and arsenate together in drinking water.
View Article and Find Full Text PDFThe shortening of the telomeres that occurs in most somatic cells and untransformed cell cultures is considered a hallmark of cellular senescence. Re-activation of telomerase, which is usually present in immortal cells, avoids telomere shortening and considerably extends the culture life span. Normal human endothelial cells are characterized by an accelerated rate of telomere shortening and reach replicative senescence after a limited number of cell divisions.
View Article and Find Full Text PDFObject: Chordomas of the skull base are generally regarded as slow-growing tumors; however, approximately 20% of these lesions have been shown to recur as early as 1 year postsurgery. The classic pathological paradigms are poor predictors of outcome, and additional markers are needed to identify patients at risk for early tumor recurrence. In this study the authors describe such a marker.
View Article and Find Full Text PDFTelomeres protect the ends of linear chromosomes from abnormal recombination events and buffer them against terminal DNA loss. Models of telomere replication predict that two daughter molecules have one end that is blunt, the product of leading-strand synthesis, and one end with a short G-rich 3'-overhang. However, experimental data from proliferating cells are not completely consistent with this model.
View Article and Find Full Text PDFJ Neurosurg
July 2002
Object: After spinal cord transection in adult rats, the axons of the corticospinal tract (CST) degenerate retrogradely and do not regenerate. This phenomenon is thought to be related to either secondary ischemia or deficiency of growth factors. To overcome the deficiency of both blood flow and growth factors, the authors added exogenous vascular endothelial growth factor (VEGF165) to the transected spinal cord either as recombinant protein alone or combined with an adenovirus coding for VEGF165.
View Article and Find Full Text PDF