The interaction of drugs with DNA is an important aspect in pharmacology. In recent years, many important technological advances have been made to develop new techniques to monitor biorecognition and biointeraction on solid devices. The interaction between DNA and drugs can cause chemical and conformational modifications and, thus, variation of the electrochemical properties of nucleobases.
View Article and Find Full Text PDFIn the present work, electrochemical DNA biosensors are proposed as a screening device for the rapid bio-analysis of environmental pollution and DNA-drug interaction studies. The binding of small molecules to DNA immobilised on disposable screen-printed electrodes has been measured through the variation of the electrochemical signal of guanine by square wave voltammetric scans. These kinds of biosensors were used to evaluate the soil contamination level in an Italian polluted area and the results were compared with several methods for the DNA damage detection, as Comet genotoxicity effects, aberrant anatelophases and micronucleated cells frequency on plant roots, and with fixed wavelength fluorescence (FF) by using 2-aminoanthracene as standard compound.
View Article and Find Full Text PDFWe report on the binding of cisplatin, carboplatin and oxaliplatin to double-stranded DNA in two different (phosphate and carbonate) buffers, using an electrochemical DNA-biosensor. The propensity of the electrophilic agent produced by hydrolysis to interact with DNA was measured as a function of the decrease of guanine oxidation signal of the metal-DNA adduct immobilized on a screen-printed electrode, by using square wave voltammetry. The results obtained confirm that carbonate reacts with platinum drugs to form activated carbonato complexes, which are able to react readily with DNA.
View Article and Find Full Text PDFElectrochemical techniques were used to study the interaction between a panel of antiproliferative metallo-drugs and double-stranded DNA immobilized on screen-printed electrodes as a model of the analogous interaction occurring in solution. The propensity of a given metal drug to interact with DNA was measured as a function of the decrease of guanine oxidation signal, which was detected by square wave voltammetry. Estimates of variations in experimental parameters, such as the concentration of complexes, time following dissolution (ageing time) and the presence of chloride, are provided.
View Article and Find Full Text PDFAn electrochemical and biological study of interaction between the prototypical antimetastatic drug imidazolium trans-tetrachlorodimethylsulfoxideimidazoleruthenate (III) complex, [ImH][RuCl(4)(DMSO)(Im)] (DMSO = dimethylsulfoxide, Im = imidazole), nicknamed NAMI-A, and several biomolecules, namely DNA, bovine (BSA) and human (HSA) serum albumin, is reported. Electrochemistry offers great advantages over the existing devices based on optical techniques, since it provides rapid, simple, and low-cost information whether the interaction occurs or not. Moreover, we describe some biochemical assays to test the interaction of NAMI-A with ribonucleoprotein telomerase and protein Taq polymerase.
View Article and Find Full Text PDF