Glaucoma is chronic optic neuropathy whose pathogenesis has been associated with the altered metabolism of Trabecular Meshwork Cells, which is a cell type involved in the synthesis and remodeling of the trabecular meshwork, the main drainage pathway of the aqueous humor. Starting from previous findings supporting altered ubiquitin signaling, in this study, we investigated the ubiquitin-mediated turnover of myocilin (MYOC/TIGR gene), which is a glycoprotein with a recognized role in glaucoma pathogenesis, in a human Trabecular Meshwork strain cultivated in vitro in the presence of dexamethasone. This is a validated experimental model of steroid-induced glaucoma, and myocilin upregulation by glucocorticoids is a phenotypic marker of Trabecular Meshwork strains.
View Article and Find Full Text PDFCrohn's and ulcerative colitis are common conditions associated with inflammatory bowel disease as well as intestinal flora and epithelial barrier dysfunction. A novel fermented (AL0035) herein assayed in a trinitro benzene sulfonic acid (TNBS)-induced colitis mice model after oral administration significantly counteracted the body weight loss and improves the disease activity index and histological injury scores. AL0035 significantly decreased the mRNA and protein expression of different pro-inflammatory cytokines (TNFalpha, IL-1beta, IL-6, IL-12, IFN-gamma) and enhanced the expression of IL-10.
View Article and Find Full Text PDFPlants are an incredible source of metabolites showing a wide range of biological activities. Among these, there are the alkaloids, which have been exploited for medical purposes since ancient times. Nowadays, many plant-derived alkaloids are the main components of drugs used as therapy for different human diseases.
View Article and Find Full Text PDFIn the last years, neuroprotective therapies have attracted the researcher interests as modern and challenging approach for the treatment of neurodegenerative diseases, aimed at protecting the nervous system from injuries. Glaucoma is a neurodegenerative disease characterized by progressive excavation of the optic nerve head, retinal axonal injury and corresponding vision loss that affects millions of people on a global scale. The molecular basis of the pathology is largely uncharacterized yet, and the therapeutic approaches available do not change the natural course of the disease.
View Article and Find Full Text PDFThe insulin-degrading enzyme (IDE) is a Zn peptidase originally discovered as the main enzyme involved in the degradation of insulin and other amyloidogenic peptides, such as the β-amyloid (Aβ) peptide. Therefore, a role for the IDE in the cure of diabetes and Alzheimer's disease (AD) has been long envisaged. Anyway, its role in degrading amyloidogenic proteins remains not clearly defined and, more recently, novel non-proteolytic functions of the IDE have been proposed.
View Article and Find Full Text PDFNitrobindins (Nbs) are all-β-barrel heme proteins spanning from bacteria to . They inactivate reactive nitrogen species by sequestering NO, converting NO to HNO, and promoting peroxynitrite isomerization to NO. Here, the nitrite reductase activity of Nb(II) from (-Nb(II)), (-Nb(II)), (-Nb(II)), and (-Nb(II)) is reported.
View Article and Find Full Text PDFThe immunoproteasome is a specialized form of proteasome equipped with modified catalytic subunits that was initially discovered to play a pivotal role in MHC class I antigen processing and immune system modulation. However, over the last years, this proteolytic complex has been uncovered to serve additional functions unrelated to antigen presentation. Accordingly, it has been proposed that immunoproteasome synergizes with canonical proteasome in different cell types of the nervous system, regulating neurotransmission, metabolic pathways and adaptation of the cells to redox or inflammatory insults.
View Article and Find Full Text PDFBackground: Diabetic retinopathy (DR) is a microvascular complication of diabetes with a heavy impact on the quality of life of subjects and with a dramatic burden for health and economic systems on a global scale. Although the pathogenesis of DR is largely unknown, several preclinical data have pointed out to a main role of Muller glia (MG), a cell type which spans across the retina layers providing nourishment and support for Retina Ganglion Cells (RGCs), in sensing hyper-glycemia and in acquiring a pro-inflammatory polarization in response to this insult.
Results: By using a validated experimental model of DR in vitro, rMC1 cells challenged with high glucose, we uncovered the induction of an early (within minutes) and atypical Nuclear Factor-kB (NF-kB) signalling pathway regulated by a calcium-dependent calmodulin kinase II (CamKII)-proteasome axis.
Cationic porphyrins exhibit an amazing variety of binding modes and inhibition mechanisms of 20S proteasome. Depending on the spatial distribution of their electrostatic charges, they can occupy different sites on α rings of 20S proteasome by exploiting the structural code responsible for the interaction with regulatory proteins. Indeed, they can act as competitive or allosteric inhibitors by binding at the substrate gate or at the grooves between the α subunits, respectively.
View Article and Find Full Text PDFA reduced proteasome activity tiles excessive amyloid growth during the progress of protein conformational diseases (PCDs). Hence, the development of safe and effective proteasome enhancers represents an attractive target for the therapeutic treatment of these chronic disorders. Here we analyze two natural diastereoisomers belonging to the family of flavonolignans, Sil A and Sil B, by evaluating their capacity to increase proteasome activity.
View Article and Find Full Text PDFHemoglobin and myoglobin are generally taken as molecular models of all-α-helical heme-proteins. On the other hand, nitrophorins and nitrobindins (Nb), which are arranged in 8 and 10 β-strands, respectively, represent the molecular models of all-β-barrel heme-proteins. Here, kinetics of the hydroxylamine- (HA-) mediated oxidation of ferrous Mycobacterium tuberculosis, Arabidopsis thaliana, and Homo sapiens nitrobindins (Mt-Nb(II), At-Nb(II), and Hs-Nb(II), respectively), at pH 7.
View Article and Find Full Text PDFCarfilzomib is a last generation proteasome inhibitor (PI) with proven clinical efficacy in the treatment of relapsed/refractory multiple myeloma. This drug is considered to be extremely specific in inhibiting the chymotrypsin-like activity of the 20S proteasome, encoded by the β5 subunit, overcoming some bortezomib limitations, the first PI approved for multiple myeloma therapy which is however burdened by a significant toxicity profile, due also to its off-target effects. Here, molecular approaches coupled with molecular docking studies have been used to unveil that the Insulin-Degrading Enzyme, a ubiquitous and highly conserved Zn peptidase, often found to associate with proteasome in cell-based models, is targeted by carfilzomib in vitro.
View Article and Find Full Text PDFImmunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit.
View Article and Find Full Text PDFHead and neck cancer (HNC) has frequently an aggressive course for the development of resistance to standard chemotherapy. Thus, the use of innovative therapeutic drugs is being assessed. Bortezomib is a proteasome inhibitor with anticancer effects.
View Article and Find Full Text PDFSteroid-induced glaucoma is a severe pathological condition, sustained by a rapidly progressive increase in intraocular pressure (IOP), which is diagnosed in a subset of subjects who adhere to a glucocorticoid (GC)-based therapy. Molecular and clinical studies suggest that either natural or synthetic GCs induce a severe metabolic dysregulation of Trabecular Meshwork Cells (TMCs), an endothelial-derived histotype with phagocytic and secretive functions which lay at the iridocorneal angle in the anterior segment of the eye. Since TMCs physiologically regulate the composition and architecture of trabecular meshwork (TM), which is the main outflow pathway of aqueous humor, a fluid which shapes the eye globe and nourishes the lining cell types, GCs are supposed to trigger a pathological remodeling of the TM, inducing an IOP increase and retina mechanical compression.
View Article and Find Full Text PDFAlzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable.
View Article and Find Full Text PDFThe present study provides new evidence that cationic porphyrins may be considered as tunable platforms to interfere with the structural "key code" present on the 20S proteasome α-rings and, by consequence, with its catalytic activity. Here, we describe the functional and conformational effects on the 20S proteasome induced by the cooperative binding of the tri-cationic 5-(phenyl)-10,15,20-(tri -methyl-4-pyridyl) porphyrin (Tris-T4). Our integrated kinetic, NMR, and in silico analysis allowed us to disclose a complex effect on the 20S catalytic activity depending on substrate/porphyrin concentration.
View Article and Find Full Text PDFIn the Fall of 2019 a sudden and dramatic outbreak of a pulmonary disease (Coronavirus Disease COVID-19), due to a new Coronavirus strain (i.e., SARS-CoV-2), emerged in the continental Chinese area of Wuhan and quickly diffused throughout the world, causing up to now several hundreds of thousand deaths.
View Article and Find Full Text PDFCiticoline or CDP-choline is a drug, made up by a cytidine 5'-diphosphate moiety and choline, which upon adsorption is rapidly hydrolyzed into cytidine 5'-diphosphate and choline, easily bypassing the blood-brain barrier. Once in the brain, these metabolites are used to re-synthesize citicoline in neurons and in the other cell histo-types which uptake them. Citicoline administration finds broad therapeutic application in the treatment of glaucoma as well as other retinal disorders by virtue of its safety profile and neuro-protective and neuroenhancer activity, which significantly improves the visual function.
View Article and Find Full Text PDFRett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder which affects about 1: 10000 live births. In >95% of subjects RTT is caused by a mutation in Methyl-CpG binding protein-2 (MECP2) gene, which encodes for a transcription regulator with pleiotropic genetic/epigenetic activities. The molecular mechanisms underscoring the phenotypic alteration of RTT are largely unknown and this has impaired the development of therapeutic approaches to alleviate signs and symptoms during disease progression.
View Article and Find Full Text PDFMyoglobin (Mb), generally taken as the molecular model of monomeric globular heme-proteins, is devoted: (i) to act as an intracellular oxygen reservoir, (ii) to transport oxygen from the sarcolemma to the mitochondria of vertebrate heart and red muscle cells, and (iii) to act as a scavenger of nitrogen and oxygen reactive species protecting mitochondrial respiration. Here, the first evidence of NO inhibition of ferric Mb- (Mb(III)) mediated detoxification of peroxynitrite is reported, at pH 7.2 and 20.
View Article and Find Full Text PDFHaptoglobin (Hp) counterbalances the adverse effects of extra-erythrocytic hemoglobin (Hb) trapping the αβ dimers of Hb. In turn, the Hp:Hb complexes display heme-based reactivity. Here, the kinetics of cyanide and carbon monoxide dissociation from ferrous-ligated Hp:Hb complexes are reported at pH 7.
View Article and Find Full Text PDF